L2 — Median, Right Bisector, Altitude Unit 2
MPM2D
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Median of a Triangle:

A median of a triangle is the line segment that joins a
vertex to the midpoint of the opposite side.

To find the equation of the median from a vertex:

1) Find the midpoint of the opposite side

2) Find the slope of the line connecting the vertex to the
midpoint of the opposite side

3) Calculate the y-intercept of the line

4) Write the equation of the line.

Right Bisector

The line that passes through the midpoint of a line segment and
intersects it at a 90° angle.

To find the equation of the right bisector of line BC:

1) Find the midpoint of BC

2) Find the slope of BC.

3) Find the slope of a line perpendicular to BC

4) Use the slope perpendicular to BC and the midpoint of BC to
calculate the y-intercept of the right bisector

5) Write the equation of the right bisector

Altitude

An altitude of a triangle is a line segment from a vertex of a
triangle to the opposite side, that is perpendicular to that side.

To find the equation of an altitude from a vertex:
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1) Find the slope of the side opposite from the vertex
2) Find the slope of the altitude which is perpendicular to the B C
slope of the side opposite from the vertex

3) Use the altitude’s slope and the point from the vertex to

calculate the y-intercept of the altitude

4) Write the equation of the altitude
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Example 1: AABC has vertices A(3,4), B(—7,2), and C(1, —4). Determine...

a) an equation for the median from vertex C

midpirg = D= (H2H3) - (-3,3)

b) an equation for the right bisector of AB
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c) an equation for the altitude from vertex C
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Example 2: ADEF has vertices D(—1,5), E(—2,—1), and F(5,2). Determine...

a) an equation for the median from vertex E
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b) an equation for the right bisector of DF
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c) an equation for the altitude from vertex E
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