A <u>circle</u> is the set of all points that are the same distance from a fixed point, the center.

The **<u>radius</u>** is the distance from the center of the circle to any point on the circle.

Equation of a circle with center at ORIGIN

If the radius of the circle is at the origin (0,0), the equation simplifies.

 $x^2 + y^2 = r^2$

Example 1: Write the equation of a circle with center (0,0) and a radius of

a) 3 $\chi^{2} + y^{2} = 3^{2}$ $\chi^{2} + y^{2} = (\frac{1}{2})^{2}$ $\chi^{2} + y^{2} = (\frac{1}{2})^{2}$ $\chi^{2} + y^{2} = \frac{1}{4}$ **Example 2:** What is the radius of a circle defined by the equation $x^2 + y^2 = 36$

$$r^2 = 36$$

 $r = \sqrt{36}$
 $r = 6$ units

Example 3: A circle has a center at the origin and passes through the point (5,3). Determine the equation of the circle.

$$x^{2} + y^{2} = r^{2}$$

 $5^{2} + 3^{2} = r^{2}$
 $r^{2} = 34$
 $\chi^{2} + y^{2} = 34$

Example 4: Is the point (-5,9) inside, outside, or on the circle $x^2 + y^2 = 100$

$$(-5)^{2} + (9)^{2} \stackrel{?}{=} 100$$

 $25 + 81 \stackrel{?}{=} 100$
 $106 > 100$

Tip: If point (x, y) is <u>ON</u> the circle $\rightarrow x^2 + y^2 = r^2$ If point (x, y) is <u>OUTSIDE</u> the circle $\rightarrow x^2 + y^2 > r^2$ If point (x, y) is <u>INSIDE</u> the circle $\rightarrow x^2 + y^2 < r^2$

Example 5: Determine the equation of a circle with center at (3,4) and a radius of 8.

$$(x-h)^{2} + (y-K)^{2} = r^{2}$$

$$(x-3)^{2} + (y-4)^{2} = 8^{2}$$

$$(x-3)^{2} + (y-4)^{2} = 64$$

Example 6: Determine the shortest distance from the point (10,7) to the edge of the circle $x^2 + y^2 = 49$

Distance From origin to (10,7):

$$D = \int (10 - 0)^{2} + (7 - 0)^{2}$$

$$D = \int \overline{149}$$
Radius of circle:

$$r^{2} = 49$$

$$r = \overline{549}$$

$$r = 7$$

Distance from point to circle:

$$D = \sqrt{149} - 7$$

 $D \simeq 5.21$ units

Tip:

The shortest distance is going be in the direction of a line that goes through the center of the circle.

geogebra link