Formulas we will need:

Midpoint =
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Length = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Equation of a circle: $x^2 + y^2 = r^2$

Example 1: Verify that the diagonals of the parallelogram with vertices P(-2,1), Q(3,3), R(4,-1), and S(-1,-3) bisect each other.

Example 2: The vertices of a triangle are A(-3,6), B(1,-6) and C(5,2). If M is the midpoint of AB and N is the midpoint of AC, verify that

a) *MN* is parallel to *BC*

b) *MN* is half the length of *BC*

Example 3: ΔDEF has vertices D(4,2), E(-6,4), and F(-2,-4). Determine the coordinates of the circumcentre of ΔDEF . The circumcentre is the point of intersection of the right bisectors of the sides of a triangle.

Example 4: The equation of a circle with centre O(0,0) is $x^2 + y^2 = 25$. The points A(-3,4) and B(5,0) are the endpoints of chord *AB*. Verify that the centre of the circle lies on the right bisector of chord *AB*.

Example 5: Find the distance from the point P(-1,3) to the line x + y - 5 = 0, to the nearest tenth of a unit.

Steps to find shortest distance from a point to a line:

- Write an equation for the line that is perpendicular to the given line and intersects the point given
- 2) Find the point of intersection of the perpendicular line with the given line
- **3)** Find the distance between the POI and the given point.

