Formulas we will need:

Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Length $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Equation of a circle: $x^{2}+y^{2}=r^{2}$

Example 1: Verify that the diagonals of the parallelogram with vertices $P(-2,1), Q(3,3), R(4,-1)$, and $S(-1,-3)$ bisect each other.

Example 2: The vertices of a triangle are $A(-3,6), B(1,-6)$ and $C(5,2)$. If M is the midpoint of $A B$ and N is the midpoint of $A C$, verify that
a) $M N$ is parallel to $B C$
b) $M N$ is half the length of $B C$

Example 3: $\triangle D E F$ has vertices $D(4,2), E(-6,4)$, and $F(-2,-4)$. Determine the coordinates of the circumcentre of $\triangle D E F$. The circumcentre is the point of intersection of the right bisectors of the sides of a triangle.
https://www.geogebra.org/calculator/brabwjsq

Example 4: The equation of a circle with centre $O(0,0)$ is $x^{2}+y^{2}=25$. The points $A(-3,4)$ and $B(5,0)$ are the endpoints of chord $A B$. Verify that the centre of the circle lies on the right bisector of chord $A B$.

Example 5: Find the distance from the point $P(-1,3)$ to the line $x+y-5=0$, to the nearest tenth of a unit.

Steps to find shortest distance from a point to a line:

1) Write an equation for the line that is perpendicular to the given line and intersects the point given
2) Find the point of intersection of the perpendicular line with the given line
3) Find the distance between the POI and the given point.

