```
W3 - Equation of a Circle
MPM2D
; Jensen
```

Unit 2

1) Determine the equation of each circle.
a)

b)

2) State the radius of each of the following circles.
a) $x^{2}+y^{2}=49$
b) $x^{2}+y^{2}=16$
c) $x^{2}+y^{2}=64$
d) $x^{2}+y^{2}=1.44$
3) Find an equation for the circle centred at the origin that passes through each point.
a) $(3,-4)$
b) $(-5,2)$
4) Determine whether each point is on, inside, or outside the circle defined by $x^{2}+y^{2}=26$.
a) $(1,3)$
b) $(-4,6)$
c) $(1,5)$
5) The point $A(4, b)$ lies on the circle defined by $x^{2}+y^{2}=25$.
a) Find the possible value(s) of b.
b) Use a graph to show that the point(s) corresponding to the possible value(s) of b are on the circle.

6)a) Graph the circle defined by $x^{2}+y^{2}=45$.
b) Verify algebraically that the line segment joining $P(-3,6)$ and $Q(6,-3)$ is a chord of this circle. (In other words, verify that P and Q are points on the circle)

c) Find an equation in the form $y=m x+b$ for the right bisector of chord PQ.
6) Determine an equation for each of the following circles.
a) centered at $(4,3)$ with a radius of 5
b)

7) An equation for the small circle in this diagram is $x^{2}+y^{2}=4$. Determine the equation for the larger circle.

9)a) Graph the circle defined by $x^{2}+y^{2}=41$.
b) Verify algebraically that the line segment joining $U(-4,5)$ and $V(-5,-4)$ is a chord of this circle.

c) Determine an equation for the line that passes through the origin and is perpendicular to the chord $U V$.
d) Verify that this line passes through the midpoint of the chord.

Answers

1)a) $x^{2}+y^{2}=36$ b) $x^{2}+y^{2}=7$
2)a) 7 b) 4 c) 8 d) 1.2
3)a) $x^{2}+y^{2}=25$ b) $x^{2}+y^{2}=29$

4a) inside b) outside c) on
5)a) $(4,3)$ and $(4,-3) \quad$ b)

6)a)
b) see solution for steps c) $y=x$

7)a) $(x-4)^{2}+(x-3)^{2}=25$ b) $(x+1)^{2}+(y-2)^{2}=9$
8) $x^{2}+y^{2}=8$
9a)
b) see solutions c) $y=-\frac{1}{9} x$
d) The line passes through the midpoint $\left(-\frac{9}{2}, \frac{1}{2}\right)$

