¦ MPM2D ¦ Jensen	t 3
a polynomial is the OPPOSITE of expanding	·

Expanding \rightarrow Multiplying

Factoring \rightarrow Dividing

To factor a polynomial, remove the greatest common factor as the first factor, then ______ each term by the greatest common factor to obtain the second factor.

A greatest common factor is the greatest number and/or variable that is a factor (divides evenly into) of all terms in a set.

Part 1: Monomial Common Factor

Example 1: Factor each of the following expressions

a) -5x + 20 **b**) $8x^2 - 7x$

c) $25x^6 + 15x^4$

d) $21x^4y^3 - 28x^2y^5 + 7xy^3$

e) $4x^2y^3 + 10x^4y^2 - 12x^3y^2$

f) $8x^3 - 6x^2y^2 + 4x^2y$

Part 2: Binomial Common Factor and Factoring by Grouping

A greatest common factor is not necessarily a monomial.

Example 2: Factor each of the following expressions

a)
$$3x(y+1) + 7(y+1)$$

b) $2x(x-3) - 5(x-3)$

c) $5x(x^2 + 2x + 7) - 4(x^2 + 2x + 7)$

Some polynomials do not have a common factor but can be factored by ______. When factoring by grouping:

- 1) group pairs of terms with a common factor (always separate groups with an addition sign)
- 2) remove a common factor from each group
- 3) factor the common binomial (or other type of polynomial) from the expression

Example 3: Factor each of the following expressions

a) ac + bc + ad + bdb) $9x^2 + 15x + 3x + 5$