Factoring a polynomial is the OPPOSITE of expanding
Expanding \rightarrow Multiplying
Factoring \rightarrow Dividing
To factor a polynomial, remove the greatest common factor as the first factor, then divide each term by the greatest common factor to obtain the second factor.

A greatest common factor is the greatest number and/or variable that is a factor (divides evenly into) of all terms in a set.

Part 1: Monomial Common Factor

Example 1: Factor each of the following expressions
a) $-5 x+20$

$$
=-5\left(\frac{-5 x+20}{-5}\right)
$$

$$
=-5\left(\frac{-5 x}{-5}+\frac{20}{-5}\right)
$$

$$
=-5(x-4)
$$

$$
\text { b) } \begin{aligned}
& 8 x^{2}-7 x \\
& =x\left(\frac{8 x^{2}-7 x}{x}\right) \\
& =x\left(\frac{8 x^{2}}{x}-\frac{7 x}{x}\right) \\
& =x(8 x-7)
\end{aligned}
$$

c) $25 x^{6}+15 x^{4}$
$=5 x^{4}\left(\frac{25 x^{6}+15 x^{4}}{5 x^{4}}\right)$
$=5 x^{4}\left(5 x^{2}+3\right)$

Note: When common factoring a variable,
choose the one with the smallest exponent.
d) $21 x^{4} y^{3}-28 x^{2} y^{5}+7 x y^{3}$
$=7 x y^{3}\left(\frac{21 x^{4} y^{3}-28 x^{2} y^{5}+7 x y^{3}}{7 x y^{3}}\right)$

$$
=7 x y^{3}\left(3 x^{3}-4 x y^{2}+1\right)
$$

$$
=2 x^{2} y^{2}\left(2 y+5 x^{2}-6 x\right)
$$

$$
\text { f) } \begin{aligned}
& 8 x^{3}-6 x^{2} y^{2}+4 x^{2} y \\
& =2 x^{2}\left(\frac{8 x^{3}-6 x^{2} y^{2}+4 x^{2} y}{2 x^{2}}\right) \\
& =2 x^{2}\left(4 x-3 y^{2}+2 y\right)
\end{aligned}
$$

Part 2: Binomial Common Factor and Factoring by Grouping
A greatest common factor is not necessarily a monomial.
Example 2: Factor each of the following expressions

$$
\begin{aligned}
& \text { a) } 3 x(y+1)+7(y+1) \\
& =(y+1)\left[\frac{3 x(y+1)+7(y+1)}{y+1}\right] \\
& =(y+1)(3 x+7)
\end{aligned}
$$

$$
\text { b) } 2 x(x-3)-5(x-3)
$$

$$
\begin{aligned}
& =(x-3)\left[\frac{2 x(x-3)-5(x-3)}{x-3}\right] \\
& =(x-3)(2 x-5)
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& 5 x\left(x^{2}+2 x+7\right)-4\left(x^{2}+2 x+7\right) \\
= & \left(x^{2}+2 x+7\right)\left[\frac{5 x\left(x^{2}+2 x+7\right)-4\left(x^{2}+2 x+7\right)}{x^{2}+2 x+7}\right] \\
= & \left(x^{2}+2 x+7\right)(5 x-4)
\end{aligned}
$$

Some polynomials do not have a common factor but can be factored by grouping. When factoring by grouping:

1) group pairs of terms with a common factor (always separate groups with an addition sign)
2) remove a common factor from each group
3) factor the common binomial (or other type of polynomial) from the expression

Example 3: Factor each of the following expressions
a) $a c+b c+a d+b d$

$$
=(a c+b c)+(a d+b d)
$$

$$
=c(a+b)+d(a+b)
$$

$$
=(a+b)(c+d)
$$

$$
\text { b) } \begin{aligned}
& 9 x^{2}+15 x+3 x+5 \\
= & \left(9 x^{2}+15 x\right)+(3 x+5) \\
= & 3 x(3 x+5)+1(3 x+5) \\
= & (3 x+5)(3 x+1)
\end{aligned}
$$

