L1 – Intro to Quadratics	Unit 4	- 1
MPM2D		i
¦ Jensen		
L	• •	_1

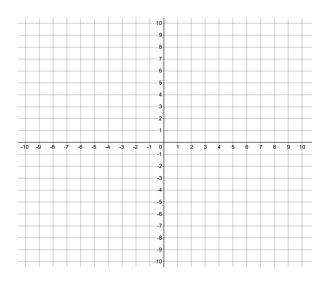
Section 1: Properties of Quadratics

The simplest form a _____ relationship is y = x

x	у	1 st Differences
-3		
-2		
-1		
0		
1		
2		
3		

Notice that the column	of 1 st finite differences i	is
------------------------	---	----

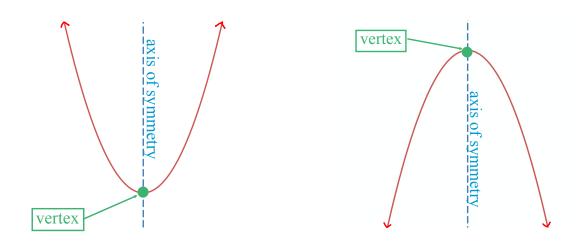
_____ for linear relationships.


-3 -2 -1

--3

-6 -5

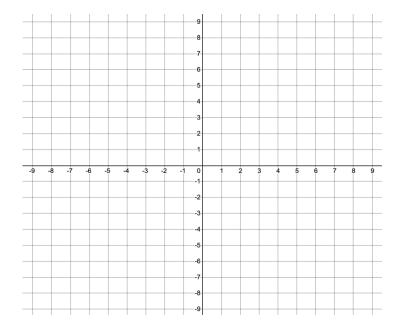
The simplest form a _____ relationship is $y = x^2$


x	у	1 st Differences	2 nd Differences
-3			
-2			
-1			
0			
1			
2			
3			

Notice that the column of 2nd column of finite differences is ______ for quadratic relationships.

Properties of Quadratics

- The shape of the graph of a quadratic relation is called a ______
- A parabola has a maximum or minimum point called a ______
- If the parabola opens up, the vertex is a ______ point
- If the parabola opens down, the vertex is a _____ point
- Parabolas are symmetrical
- The vertical line that passes through the vertex is the _____



Section 2: Quadratics in Standard Form

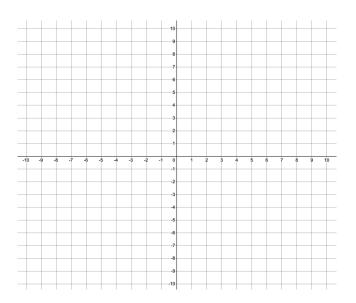
The standard form of a quadratic equation is

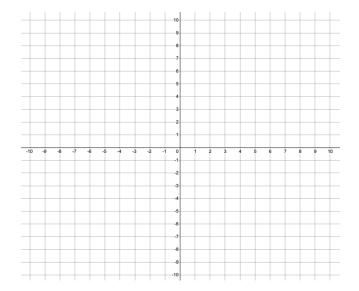
Example 1: For the function $y = x^2 + 2x + 1$, sketch a graph by completing the given table of values, then state the vertex and axis of symmetry.

x	у
-4	
-3	
-2	
-1	
0	
1	
2	

Properties of Quadratics from the Standard Form Equation $\Rightarrow y = ax^2 + bx + c$

- If a > 0, the parabola opens _____
- If a < 0, the parabola opens ______
- The ______ is at (0, *c*)


Example 2: State the direction of opening and *y*-intercept of the given quadratic, then make a table of values and sketch the graph to verify.


a)
$$y = -3x^2 + 2$$

b)
$$y = 2x^2 - 8x + 3$$

x	y

x	у

