Section 1: Properties of Quadratics

The simplest form a LINEAR relationship is $y=x$

\boldsymbol{x}	\boldsymbol{y}	$\mathbf{1}^{\text {st }}$ Differences
-3	-3	
-2	-2	$-2-(-3)=1$
-1	-1	$-1-(-2)=1$
0	0	$0-(-1)=1$
1	1	$1-0=1$
2	2	$2-1=1$
3	3	$3-2=1$

Notice that the column of $1^{\text {st }}$ finite differences is constant for linear relationships.

The simplest form a QUADATRIC relationship is $y=x^{2}$

\boldsymbol{x}	\boldsymbol{y}	$\mathbf{1}^{\text {st }}$ Differences	$\mathbf{2}^{\text {nd }}$ Differences
-3	9		
-2	4	$4-9=-5$	
-1	1	$1-4=-3$	$-3-(-5)=2$
0	0	$0-1=-1$	$-1-(-3)=2$
1	1	$1-0=1$	$1-(-1)=2$
2	4	$4-1=3$	$3-1=2$
3	9	$9-4=5$	$5-3=2$

Notice that the column of $2^{\text {nd }}$ column of finite differences is constant for quadratic relationships.

Properties of Quadratics

- The shape of the graph of a quadratic relation is called a PARABOLA
- A parabola has a maximum or minimum point called a VERTEX
- If the parabola opens up, the vertex is a MINIMUM point
- If the parabola opens down, the vertex is a MAXIMUM point
- Parabolas are symmetrical
- The vertical line that passes through the vertex is the AXIS OF SYMMETRY

Section 2: Quadratics in Standard Form

The standard form of a quadratic equation is

$$
y=a x^{2}+b x+c
$$

Example 1: For the function $y=x^{2}+2 x+1$, sketch a graph by completing the given table of values, then state the vertex and axis of symmetry.

\boldsymbol{x}	\boldsymbol{y}
-4	9
-3	4
-2	1
-1	0
0	4
1	4
2	

vertex: $(-1,0)$
axis of symmetry: $x=-1$

Properties of Quadratics from the Standard Form Equation $\rightarrow y=a x^{2}+b x+c$

- If $a>0$, the parabola opens UP
- If $a<0$, the parabola opens DOWN
- The y-intercept is at $(0, c)$

Example 2: State the direction of opening and y-intercept of the given quadratic, then make a table of values and sketch the graph to verify.
a) $y=-3 x^{2}+2$
b) $y=2 x^{2}-8 x+3$

- opens up
- y-int: $(0,-3)$

x	y
-3	-25
-2	-10
-1	-1
0	2
1	-1
2	-10
3	-25

\boldsymbol{x}	\boldsymbol{y}
-1	13
0	3
1	-3
2	-5
3	-3
4	3
5	13

