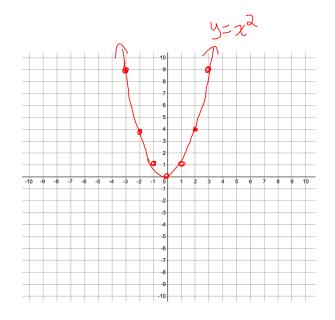

L1 – Intro to Quadratics

MPM2D Jensen

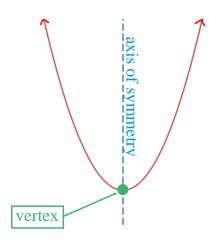
Section 1: Properties of Quadratics

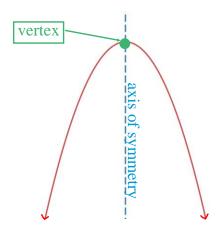
The simplest form a **LINEAR** relationship is y = x


х	у	1 st Differences
-3	M 1	
-2	7	-2-(-3)=
-1	- 1	-1-(-2)=
0		0-(-1)=
1	J	<u> </u>
2	2	7 = 1
3	M	3-2=1

Notice that the column of 1st finite differences is **constant** for linear relationships.

The simplest form a ${\color{red} {\bf QUADATRIC}}$ relationship is $y=x^2$


x	у	1 st Differences	2 nd Differences
-3	9		
-2	4	4-9 = -5	
-1		1-4=-3	-3-(-5)=2
0	0	0-1=-1	-1-(-3) = 2
1		-○≃	1-(-1)=2
2	4	4-1=3	3-1=2
3	9	9-4=5	5-3 = 2

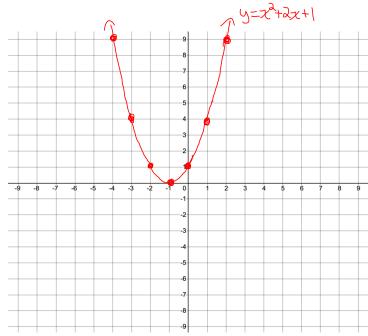


Notice that the column of 2^{nd} column of finite differences is **constant** for quadratic relationships.

Properties of Quadratics

- The shape of the graph of a quadratic relation is called a PARABOLA
- A parabola has a maximum or minimum point called a **VERTEX**
- If the parabola opens up, the vertex is a MINIMUM point
- If the parabola opens down, the vertex is a **MAXIMUM** point
- Parabolas are symmetrical
- The vertical line that passes through the vertex is the **AXIS OF SYMMETRY**

Section 2: Quadratics in Standard Form


The standard form of a quadratic equation is

$$y = ax^2 + bx + c$$

Example 1: For the function $y = x^2 + 2x + 1$, sketch a graph by completing the given table of values, then state the vertex and axis of symmetry.

x	у
-4	9
-3	4
-2	
-1	0
0	
1	4
2	9

Vertex:
$$(-1,0)$$

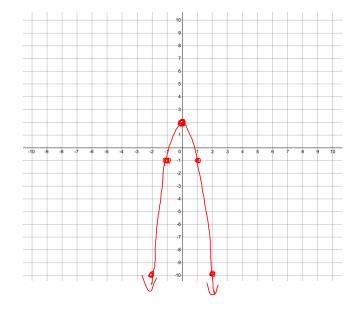
axis of symmetry: $\chi=-1$

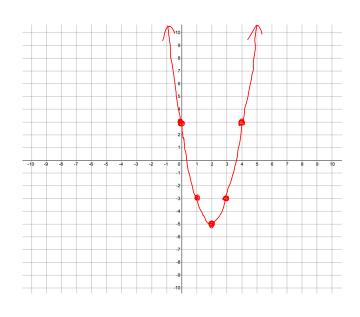
Properties of Quadratics from the Standard Form Equation $\Rightarrow y = ax^2 + bx + c$

- If a > 0, the parabola opens UP
- If a < 0, the parabola opens **DOWN**
- The <u>y-intercept</u> is at (0, c)

Example 2: State the direction of opening and *y*-intercept of the given quadratic, then make a table of values and sketch the graph to verify.

a)
$$y = -3x^2 + 2$$


- · opens Down · y-int: (0,2)


b)	y	=	$2x^2$	_	8 <i>x</i>	+	3
----	---	---	--------	---	------------	---	---

- opens upy-int: (0,-3)

x	у
-3	-25
-2	-10
-	-
0	2
1	-
2	-10
3	-25

x	у
-	13
\bigcirc	3
	-3
2	-5
3	-3
4 5	3
5	13

