Standard Form: $y=a x^{2}+b x+c$
Vertex Form: $y=a(x-h)^{2}+k$
Factored Form: $y=a(x-r)(x-s)$
Part 1: Effects of a, h, and k on transforming the graph of $y=x^{2}$
The effects of the k parameter on the graph of $y=x^{2}+k$

| Function | Graph
 $y=x^{2}+3$ | | Axis of
 Symmetry | Transformations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=x^{2}-2$ | | $x=0$ | shift up 3 units | |

The effects of the h parameter on the graph of $y=(x-h)^{2}$

The effects of the a parameter on the graph of $y=a x^{2}$

$$
\text { Properties of } y=a(x-h)^{2}+k
$$

$a>0 \rightarrow$ opens up
$a<0 \rightarrow$ opens down; vertical reflection in the x-axis
$a>1$ or $a<-1 \rightarrow$ vertical stretch by a factor of $|a|$
$-1<a<1 \rightarrow$ vertical compression by a factor of $|a|$
$h>0 \rightarrow$ shift RIGHT h units
$h<0 \rightarrow$ shift LEFT $|h|$ units
$k>0 \rightarrow$ shift up k units
$k<0 \rightarrow$ shift down $|k|$ units
Vertex is at (h, k)

Axis of symmetry is at $x=h$

The domain (values x may take) of all quadratic functions is $X \in \mathbb{R}$
The range (values y may take) depends on the location of the vertex

Example 1: For each of the following functions, i) describe the transformations compared to $y=x^{2}$, ii) complete the table of properties, iii) graph the function by making a table of values
a) $y=-3(x+2)^{2}$

Transformations:

- vertical stretch by a factor of 3
- vertical reflection
- shift left 2 units

Vertex	$(-2, \subset)$
Axis of Symmetry	$x=-2$
Direction of Opening	down
Values x may take (domain)	$\{X \in \mathbb{R}\}$
Values \boldsymbol{y} may take (range)	$\{V \in \mathbb{R} \mid y \leq 0\}$

x	y
-4	-12
-3	-3
-2	0
-1	-3
0	-12

b) $y=2 x^{2}-5=2(x-0)^{2}-5$

Transformations:

- vertical stretch by a factor of 2
- shift down 5 units

Vertex	$(0,-5)$
Axis of Symmetry	$x=0$
Direction of Opening	$u p$
Values x may take (domain)	$\{X \in \mathbb{R}\}$
Values y may take (range)	$\{\gamma \in \mathbb{R} / y \geq-5\}$

x	y
-2	3
-1	-3
0	-5
1	-3
2	3

c) $y=2(x-3)^{2}+1$

Transformations:

- Vertical stretch by a factor of 2
- shift right 3 units
- shift up 1 unit

Vertex	$(3,1)$
Axis of Symmetry	$x=3$
Direction of Opening	$u \rho$
Values x may take (domain)	$\{x \in \mathbb{R}\}$
Values y may take (range)	$\{Y \in \mathbb{R} \mid y \geq 1\}$

\boldsymbol{x}	\boldsymbol{y}
1	9
2	3
3	1
4	3
5	9

Example 2: Determine the vertex form equation of the parabola with its vertex at $(1,5)$ and passes through the point $\binom{0,2}{x}$

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& 2=a(0-1)^{2}+5 \\
& 2=a(1)+5 \\
& 2-5=a \\
& a=-3
\end{aligned}
$$

Example 3: Determine the vertex form equation of the following parabolas
a)

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& 1=a\left[1-(-2)^{2}+4\right. \\
& 1=a(3)^{2}+4 \\
& 1=9 a+4 \\
& 1-4=9 a \\
& -3=9 a \\
& \frac{-3}{9}=a \\
& a=\frac{-1}{3}
\end{aligned}
$$

$$
y=-\frac{1}{3}(x+2)^{2}+4
$$

b)

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
3 & =a(5-3)^{2}+(-1) \\
3 & =a(4)-1 \\
3+1 & =4 a \\
4 & =4 a \\
a & =\frac{4}{4} \\
a & =1
\end{aligned}
$$

$$
y=(x-3)^{2}-1
$$

Example 4: The graph of $y=x^{2}$ is reflected vertically in the x-axis, compressed vertically by a factor of $\frac{1}{4^{\prime}}$ shifted 1 unit to the left, and 2 units down. Write the vertex form equation of this parabola.

$$
\begin{aligned}
& a=-\frac{1}{4} \\
& h=-1 \\
& k=-2
\end{aligned}
$$

Example 5: At a fireworks display, a firework is launched from a height of 2 meters above the ground and reaches a max height of 40 meters at a horizontal distance of 10 meters. The firework continues to travel an additional 1 meter horizontally after it reaches its max height before it explodes. What is the height when it explodes?

$$
\left.\begin{array}{r}
h \\
\text { vertex }: \\
y-i n t: \\
y, \\
y,
\end{array}\right)
$$

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
2 & =a(0-10)^{2}+40 \\
2 & =a(100)+40 \\
-38 & =100 a \\
a & =\frac{-38}{100} \\
a & =\frac{-19}{50} \\
y & =\frac{-19}{50}(x-10)^{2}+40
\end{aligned}
$$

Calculate height when $x=11$

$$
\begin{aligned}
& y=\frac{-19}{50}(11-10)^{2}+40 \\
& y=\frac{-19}{50}+\frac{2000}{50} \\
& y=\frac{1981}{50}
\end{aligned}
$$

The height is 39.62 m when it explodes.

