L2 –Quadratics in Vertex Form MPM2D

Jensen

Standard Form: $y = ax^2 + bx + c$

Vertex Form: $y = a(x - h)^2 + k$

Factored Form: y = a(x - r)(x - s)

Part 1: Effects of a, h, and k on transforming the graph of $y = x^2$

The effects of the *k* parameter on the graph of $y = x^2 + k$

Function	Graph	Vertex	Axis of Symmetry	Transformations
$y = x^2 + 3$		(0,3)	X = 0	Shift up 3 units
$y = x^2 - 2$		(0,-2)	X=0	shift down 2 units

The effects of the *h* parameter on the graph of $y = (x - h)^2$

Function	Graph	Vertex	Axis of Symmetry	Transformations
$y = (x - 2)^2$		(2,0)	X=2	shift Right 2 units
$y = (x+3)^2$		(-3,0)	x=-3	shift Left 3 units

The effects of the *a* parameter on the graph of $y = ax^2$

Example 1: For each of the following functions, i) describe the transformations compared to $y = x^2$, ii) complete the table of properties, iii) graph the function by making a table of values

a) $y = -3(x+2)^2$

Transformations:

- · vertical reflection
- · shift left 2 units

Vertex	(-2,0)
Axis of Symmetry	$\chi = -\chi$
Direction of Opening	down
Values <i>x</i> may take (domain)	{XER}
Values y may take (range)	{VEIR y≤0}

x	у
-4	-12
- 3	
-2	0
-	, VJ
0	-12

b)
$$y = 2x^2 - 5 \neq 2(x - 0)^2 - 5$$

Transformations:

- · vertical stretch by a factor of 2
- · Shift down 5 units

Vertex	(0 ₁ -5)
Axis of Symmetry	X=0
Direction of Opening	up
Values <i>x</i> may take (domain)	{XER}
Values y may take (range)	$\left\{ V \in \mathbb{R} / y \ge -5 \right\}$

x	y
-2	3
-)	-3
0	-5
	-3
2	3

c) $y = 2(x-3)^2 + 1$

- Transformations:
 Vertical stretch by a factor of 2 · shift right 3 units
 - o shift up I unit

Vertex	(3,1)
Axis of Symmetry	X=3
Direction of Opening	up
Values <i>x</i> may take (domain)	EXER3
Values y may take (range)	EVER 4213

x	у
	9
2	3
3	
4	Ŋ
5	9

Example 2: Determine the vertex form equation of the parabola with its vertex at (1,5) and passes through the point (0,2)

$$y = \alpha (x-h)^{2} + k$$

$$a = \alpha (0-1)^{2} + 5$$

$$a = -3$$

$$y = -3(x-1)^{2} + 5$$

$$y = -3(x-1)^{2} + 5$$

Example 3: Determine the vertex form equation of the following parabolas

Example 4: The graph of $y = x^2$ is reflected vertically in the *x*-axis, compressed vertically by a factor of $\frac{1}{4}$, shifted 1 unit to the left, and 2 units down. Write the vertex form equation of this parabola.

Example 5: At a fireworks display, a firework is launched from a height of 2 meters above the ground and reaches a max height of 40 meters at a horizontal distance of 10 meters. The firework continues to travel an additional 1 meter horizontally after it reaches its max height before it explodes. What is the height when it explodes?

vertex:
$$(0, 40)$$

 $y = \alpha (x-h)^2 + k$
 $y = \alpha (0-10)^2 + 40$
 $2 = \alpha (100) + 40$
 $-38 = 100 \alpha$
 $\alpha = -\frac{38}{100}$
 $\alpha = -\frac{19}{50}$
 $y = -\frac{19}{50} (x-10)^2 + 40$
Calculate height when $x = 11$
 $y = -\frac{19}{50} (11-10)^2 + 40$
 $y = -\frac{19}{50} (11-10)^2 + 40$
 $y = -\frac{19}{50} + 2\frac{2000}{50}$
 $y = \frac{1981}{50}$
The height is 39.62 m when it explodes.