MPM2D
; Jensen

Standard Form: $y=a x^{2}+b x+c$
Vertex Form: $y=a(x-h)^{2}+k$

Factored Form: $y=a(x-r)(x-s)$

Part 1: Analysis of a Quadratic in Factored Form

Example 1: Given the graph of $y=2(x+3)(x-5)$
a) What are the x-intercepts and how do they relate to the equation?
b) What is the vertex? How does the x-coordinate of the vertex relate to the x-intercepts?

c) What is the equation of the axis of symmetry?
d) What is direction of opening?

Properties of $y=a(x-r)(x-s)$

Example 1: Given the following quadratic equations, determine the i) x-intercepts using the zero product rule, ii) the axis of symmetry, iii) the vertex iv) graph the quadratic
a) $y=2(x+1)(x-3)$

Zero product rule: The product of factors is zero if one or more of the factors are zero.
$a b=0$ if $a=0$ or $b=0$ (or both)

b) $y=\frac{1}{2}(x+6)(x+2)$

c) $y=x^{2}+2 x-8$

Note: Factor the standard form quadratic in to factored form so that you can more easily find the x-intercepts.
d) $y=x^{2}-9$

Algorithm for Determining Factored Form Equation from a Graph

- Find the x-intercepts (r and s)
- Find another point on the graph (x, y)
- Plug the values of r, s, x, and y in to $y=a(x-r)(x-s)$ and solve for a
- Write the final equation by plugging in a, r, and s. NOT x and y.

Example 2: Determine the factored form equation of each of the following quadratic relations.
a)

b)

Example 3: Determine the factored form equation of the parabola with x-intercepts at -3 and -5 and passes through the point $(-4,1)$.

