```
L1 - Similar Triangles
Unit }
MPM2D
' Jensen
```

Congruent figures have the exact same shape AND size.
Similar figures have identical shapes, but different sizes.

Part 1: Properties of Similar Triangles

If $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$:

- The corresponding angles are equal

$$
\text { - } \angle A=\angle D, \angle B=\angle E, \angle C=\angle F
$$

- Ratios of corresponding sides are equal

$$
\text { ○ } \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

From the diagram we can verify these properties:
Corresponding angles are equal $\rightarrow 53.1^{\circ}=53.1^{\circ}, 90^{\circ}=90^{\circ}, 36.9^{\circ}=36.9^{\circ}$
Ratios of corresponding sides are equal $\rightarrow \frac{3}{6}=\frac{4}{8}=\frac{5}{10}$

Part 2: Proving Triangles are Similar

There are 3 ways to prove triangles are similar:

1) Angle Angle similarity (2 angles are equal)

Note: If 2 pairs of angles are equal, the $3^{\text {rd }}$ pair must be equal as well
2) Side Side Side similarity (all ratios of sides are equal)
3) Side Angle Side similarity (2 ratios of sides and 1 angle are equal)

If you can prove any of those 3 scenarios, it proves the triangles are SIMILAR meaning they are the exact same shape but not necessarily the same size.

Note: When you write a similarity statement, the order of the vertices must correctly identify pairs of equal angles and pairs of corresponding sides.
a)

$$
\begin{aligned}
& \angle E=\angle C \quad\left(90^{\circ}\right) \\
& \angle A=\angle A \quad \text { (shared angle) } \\
& \angle D=\angle B \quad \text { (corresponding angles) }
\end{aligned}
$$

b)

$\angle E=\angle B$ (alternating angles)
$\angle D=\angle A$ (alternating angles)
$\angle E C D=\angle A C B$ (opposite angles)
c)

$\triangle E C D \sim \triangle A C B$
(side side side similarity)

Part 3: Use Similar Triangles to Solve Problems
Example 2: To determine the width of a river, Naomi finds a willow tree and a maple tree that are directly across from each other on opposite shores. Using a third tree on the shoreline, Naomi plants two stakes, A and B, and measures the distances shown. Find the width of the river using the information Naomi found.

$$
\begin{aligned}
& \angle S B A=\angle W B M \text { (apposite angles) } \\
& \angle S=\angle M\left(90^{\circ}\right) \\
& \angle A=\angle W \text { (alferratig angles) }
\end{aligned}
$$

$\therefore \triangle B S A \sim \triangle B M W$ (angle angle similarity)

$$
\begin{aligned}
& \frac{S A}{M W}=\frac{B S}{B M} \\
& \frac{8.4}{x}=\frac{9.3}{24} \\
& 8.4(24)=9.3 x
\end{aligned}
$$

Example 3: The following triangles are similar; find the unknown side lengths.

$$
\begin{array}{rlrl}
\triangle A B C \sim \Delta D E F & \rightarrow \frac{A B}{D E} & =\frac{A C}{D F} & =\frac{B C}{E F} \\
\frac{4}{f} & =\frac{6}{12} & =\frac{7}{d} \\
\frac{4}{F} & =\frac{6}{12} & \frac{6}{12} & =\frac{7}{d} \\
4(12) & =6 f & 6 d & =7(12) \\
48 & =6 f & 6 d & =84 \\
f & =8 & & d=14
\end{array}
$$

Example 4: Solve for the length of x.
$\angle E=\angle B$ (corresponding angles)
$\angle A=\angle A$ (shared angle)
$\angle D=\angle C$ (corresponding angles)
$\therefore \triangle E_{A D} \sim \triangle B A C$ (angleangle similarity)

$$
\frac{E A}{B A}=\frac{E D}{B C}
$$

$$
\frac{6}{x+6}=\frac{4}{10}
$$

$$
6(10)=4(x+6)
$$

$$
60=4(x+6)
$$

$$
\frac{60}{4}=x+6
$$

$$
15=x+6
$$

$$
x=9
$$

