F 	L6 – Sine Law	Unit 3	5
i I	MPM2D		i
1 1	Jensen		1
L			

When solving for sides and angles in triangles, there are 4 main tools that can be used. Pythagorean theorem and SOHCAHTOA can only be used with ______. Sine Law and Cosine Law can be used with ______. In this lesson we will focus on the Sine Law.

Rule	When to Use It		
Pythagorean Theorem $a^2 + b^2 = c^2$	Right Triangle Know: 2 sides Want: 3 rd side		
SOHCAHTOA $S\frac{O}{H}C\frac{A}{H}T\frac{O}{a}$	Right Triangle Know: 2 sides Want: Angle (use inverse ratio)	Right Triangle Know: 1 side, 1 angle Want: Side	
Sine Law $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Oblique Triangle (no right angle) Know: 2 sides and opposite angle Want: Angle	Oblique Triangle (no right angle) Know: 1 side and all angles Want: Side	
Cosine Law $a^{2} = b^{2} + c^{2} - 2bc(\cos A)$ $\cos A = \frac{a^{2} - b^{2} - c^{2}}{-2bc}$	Oblique Triangle Know: 2 sides and contained angle Want: 3 rd side (use top formula)	Oblique Triangle Know: All 3 sides Want: Angle (use bottom formula)	

Section 1: Proof

In an acute triangle, when two angles and a side are given, the other sides can be found using the sine law, which can be developed as follows.

In $\triangle ABC$, draw AD perpendicular to BC. AD is the altitude or height, *h*, of $\triangle ABC$.

Sine Law: the relationship between the sides and their opposite angles in any acute $\triangle ABC$ is...

Note: Even though there are 3 parts to this equation, you only use two parts at a time. The choice of what to use depends on the information given. Make sure in the equation you create there is only 1 unknown.

Section 2: Find Side Lengths

Example 1: Find the measure of each indicated side

a) Find the length of side c'

Note: Sine Law can be used to solve for a side length when you know 1 side and 2 angles.

b) Find the length of side f'

c) Solve for the length of side x

Section 3: Find Angles

Example 2: Find the measure of each indicated angle

a) Find the measure of angle A

42 m $B \xrightarrow{42 \text{ m}} 64 \text{ m}$ C

Note: Sine Law can be used to solve for an angle if you know 2 sides and 1 of their opposite angles.

c) Find the measure of angle θ

Example 3: Find the perimeter of the Bermuda triangle

