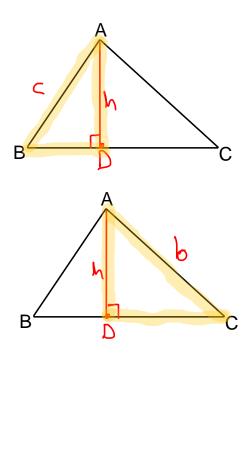
Jensen

Unit 3

When solving for sides and angles in triangles, there are 4 main tools that can be used. Pythagorean theorem and SOHCAHTOA can only be used with <u>Right Triangles</u>. Sine Law and Cosine Law can be used with <u>oblique</u> <u>and right-angle triangles</u>. In this lesson we will focus on the Sine Law.

| Rule                                                     | When to Use It                    |                                   |
|----------------------------------------------------------|-----------------------------------|-----------------------------------|
| Pythagorean Theorem                                      | Right Triangle<br>Know: 2 sides   |                                   |
| $a^2 + b^2 = c^2$                                        | Want: 3 <sup>rd</sup> side        |                                   |
| SOHCAHTOA                                                | Right Triangle                    | Right Triangle                    |
| $S\frac{O}{H}C\frac{A}{H}T\frac{O}{a}$                   | Know: 2 sides                     | Know: 1 side, 1 angle             |
| $H \circ H \circ a$                                      | Want: Angle                       | Want: Side                        |
|                                                          | (use inverse ratio)               |                                   |
| Sine Law                                                 | Oblique Triangle (no right angle) | Oblique Triangle (no right angle) |
|                                                          | Know: 2 sides and opposite angle  | Know: 1 side and all angles       |
| $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ | Want: Angle                       | Want: Side                        |
| Cosine Law                                               | Oblique Triangle                  | Oblique Triangle                  |
|                                                          | Know: 2 sides and contained angle | Know: All 3 sides                 |
| $a^2 = b^2 + c^2 - 2bc(\cos A)$                          | Want: 3 <sup>rd</sup> side        | Want: Angle                       |
|                                                          | (use top formula)                 | (use bottom formula)              |
| $\cos A = \frac{a^2 - b^2 - c^2}{-2bc}$                  |                                   |                                   |

#### **Section 1: Proof**


In an acute triangle, when two angles and a side are given, the other sides can be found using the sine law, which can be developed as follows.

In  $\triangle ABC$ , draw AD perpendicular to BC. AD is the altitude or height, h, of  $\triangle ABC$ .

Looking at 
$$\triangle ABD$$
...

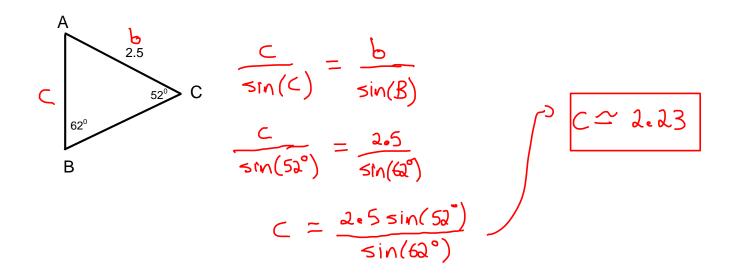
 $Sin(B) = \frac{h}{C}$ 
 $C sin(B) = h$ 

Looking at  $\triangle ADC$ 
 $Sin(C) = \frac{h}{b}$ 
 $b sin(C) = h$ 
 $00 \quad b sin(C) = C sin(B)$ 

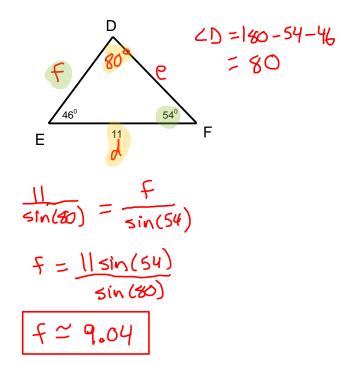


**Sine Law:** the relationship between the sides and their opposite angles in any acute  $\Delta ABC$  is...

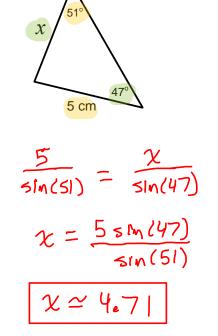
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$


**Note:** Even though there are 3 parts to this equation, you only use two parts at a time. The choice of what to use depends on the information given. Make sure in the equation you create there is only 1 unknown.

#### **Section 2: Find Side Lengths**


Example 1: Find the measure of each indicated side

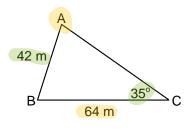
a) Find the length of side c'


**Note:** Sine Law can be used to solve for a side length when you know 1 side and 2 angles.



**b)** Find the length of side 'f'




c) Solve for the length of side x

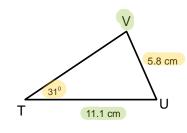


## **Section 3: Find Angles**

## **Example 2:** Find the measure of each indicated angle

## a) Find the measure of angle A




$$\frac{64}{\sin(35)} = \frac{42}{\sin(35)}$$

$$64\sin(35) = 42\sin(4)$$

$$\frac{64\sin(35)}{4a} = \sin(A)$$

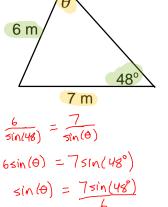
$$A = \sin^{-1} \left[ \frac{64 \sin(35)}{42} \right]$$

## b) Find the measure of angle V



$$\sin(v) = \frac{\|.\|\sin(3\|)}{5.8}$$

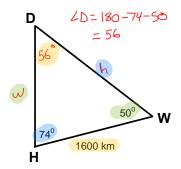
$$V = \sin^{-1}\left[\frac{11.1\sin(31)}{508}\right]$$


# **Example 3:** Find the perimeter of the Bermuda triangle

$$\frac{1600}{\sin(56)} = \frac{\sqrt{\sin(50)}}{\sin(50)}$$

$$h = \frac{1600 \sin(74)}{\sin(56)}$$

**Note:** Sine Law can be used to solve for an angle if you know 2 sides and 1 of their opposite angles.


## c) Find the measure of angle $\theta$



$$n(\theta) = \frac{7\sin(48^{\circ})}{6}$$

$$\theta = \sin^{-1}\left(\frac{7\sin(48)}{6}\right)$$

$$\theta \simeq 60.11^{\circ}$$

