# L7 – Cosine Law MPM2D Jensen

When solving for sides and angles in triangles, there are 4 main tools that can be used. Pythagorean theorem and SOHCAHTOA can only be used with <u>Right Thangle</u>. Sine Law and Cosine Law can be used with Right and Oblight triangle . In this lesson we will focus on the Cosine Law.

| Rule                            | When to Use It                              |                                   |
|---------------------------------|---------------------------------------------|-----------------------------------|
| Pythagorean Theorem             | Right Triangle                              |                                   |
| $a^2 + b^2 = c^2$               | Know: 2 sides<br>Want: 3 <sup>rd</sup> side |                                   |
|                                 |                                             |                                   |
| <b>SOHCAHTOA</b>                | Right Triangle                              | Right Triangle                    |
| $\int_{S} O A_{T} O$            | Know: 2 sides                               | Know: 1 side, 1 angle             |
| $3\frac{H}{H}$                  | Want: Angle                                 | Want: Side                        |
|                                 | (use inverse ratio)                         |                                   |
| Sine Law                        | Oblique Triangle (no right angle)           | Oblique Triangle (no right angle) |
|                                 | Know: 2 sides and opposite angle            | Know: 1 side and all angles       |
| a = b = c                       | Want: Angle                                 | Want: Side                        |
| $\sin A  \sin B  \sin C$        |                                             |                                   |
| Cosine Law                      | Obligue Triangle                            | Obligue Triangle                  |
|                                 | Know: 2 sides and contained angle           | Know: All 3 sides                 |
| $a^2 = b^2 + c^2 - 2bc(\cos A)$ | Want: 3 <sup>rd</sup> side                  | Want: Angle                       |
|                                 | (use top formula)                           | (use bottom formula)              |
| $a^2 - b^2 - c^2$               |                                             |                                   |
| $\cos A = \frac{-2bc}{-2bc}$    |                                             |                                   |
|                                 |                                             |                                   |

## Section 1: Proof

.

٨

Cosine law can be developed as follows

In  $\triangle ABC$ , draw CD perpendicular to AB. CD is the altitude, *h*, of  $\triangle ABC$ .

Looking at 
$$(AcD)$$
.  
 $\chi^{2} + h^{2} = b^{a} \cos(A) = \frac{\chi}{b}$   
 $b\cos(A) = \chi$   
Looking at  $4cDB_{eee}$   
 $(ch^{2}\chi)^{a} + h^{a} = a^{a}$   
 $c^{a} - ac\chi + \chi^{a} + h^{a} = a^{a}$   
 $c^{a} - acb\cos(A) + b^{a} = a^{a}$   
 $c^{a} - acb\cos(A) + b^{a} = a^{a}$   
 $a^{a} = b^{a} + c^{a} - abc\cos(A)$   
 $cos(A) = \frac{a^{a} - b^{a} - c^{a}}{-abc}$ 

Unit 3

### **Cosine Law:**

the relationship between two sides and their contained angle in any acute  $\Delta ABC$  is...

$$a^2 = b^3 + c^2 - 2bc \cos(A)$$

the relationship between the sides and one of their opposite angles in any acute  $\Delta ABC$  is...

$$\cos(A) = \frac{a^2 - b^2 - c^2}{-2bc}$$

### Section 2: Finding Sides

Cosine Law can be used to solve for a side length when you know 2 sides and the angle contained by those 2 sides.

$$a^2 = b^2 + c^2 - 2bc \cos(A)$$

**Note:** sides b and c are interchangeable. It just matters that they are the two known sides and angle A is contained by the two sides.

### Example 1: Find the measure of the indicated side

**a)** Find the length of side 'a'



$$a^{2} = |8^{2} + a|^{2} - 2(18)(a)\cos(61^{\circ})$$
  
 $a^{2} = 398.983927)$   
 $a \simeq 19.96$ 





#### **Section 3: Finding Angles**

**Note:** The rearranged version of Cosine Law can be used to solve for an angle if you know all 3 sides of a triangle.

c)

Find the length of side p

$$\cos(A) = \frac{a^2 - b^2 - c^2}{-2bc}$$

**Note:** Notice in this formula that the side opposite from the angle you are finding comes first in the numerator. The order of the other 2 known sides does not matter.

### Example 2: Solve for the indicated angle

a) Find the measure of angle A









**d)** Find the measure of angle  $\theta$ 



**Example 3:** In acute  $\Delta DEF$ ,  $d = 4.9 \ cm$ ,  $f = 6.2 \ cm$ , and  $\angle E = 64^{\circ}$ . Solve  $\Delta DEF$ .

