L1-1.1 - Power Functions Lesson
MHF4U
Jensen

Things to Remember About Functions

- A relation is a function if for every x-value there is only 1 corresponding y-value. The graph of a relation represents a function if it passes the \qquad that is, if a vertical line drawn anywhere along the graph intersects that graph at no more than one point.

- The \qquad of a function is the complete set of all possible values of the independent variable (x)
- Set of all possible x-vales that will output real y-values
- The \qquad of a function is the complete set of all possible resulting values of the dependent variable (y)
- Set of all possible y-values we get after substituting all possible x-values
- For the function $f(x)=(x-1)^{2}+3$

- The degree of a function is the highest exponent in the expression - $f(x)=6 x^{3}-3 x^{2}+4 x-9$ has a degree of \qquad .
- An \qquad is a line that a curve approaches more and more closely but never touches.

The function $\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}+\mathbf{3}}$ has two asymptotes:
Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq-3$. This is why the vertical line $x=-3$ is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line $y=0$ is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at $y=0$.

Polynomial Functions

A polynomial function has the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x^{1}+a_{0}
$$

- n Is a whole number
- x Is a variable
- the \qquad $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers
- the \qquad of the function is n, the exponent of the greatest power of x
- a_{n}, the coefficient of the greatest power of x, is the \qquad
- a_{0}, the term without a variable, is the \qquad
- The domain of a polynomial function is the set of real numbers \qquad
- The range of a polynomial function may be all real numbers, or it may have a lower bound or an upper bound (but not both)
- The graph of polynomial functions do not have horizontal or vertical asymptotes
- The graphs of polynomial functions of degree 0 are \qquad . The shapes of other graphs depends on the degree of the function. Five typical shapes are shown for various degrees:

Linear Quadratic $(n=1) \quad(n=2)$

Cubic
($n=3$)

Quartic
($n=4$)

Quintic
($n=5$)

A \qquad is the simplest type of polynomial function and has the form:

$$
f(x)=a x^{n}
$$

- a is a real number
- x is a variable
- n is a whole number

Example 1: Determine which functions are polynomials. State the degree and the leading coefficient of each polynomial function.
a) $g(x)=\sin x$

b) $f(x)=2 x^{4}$ \square
c) $y=x^{3}-5 x^{2}+6 x-8$
d) $g(x)=3^{x}$
\square

Interval Notation

In this course, you will often describe the features of the graphs of a variety of types of functions in relation to real-number values. Sets of real numbers may be described in a variety of ways:

1) as an inequality $-3<x \leq 5$
2) interval (or bracket) notation ($-3,5$]
3) graphically on a number line

Note:

- Intervals that are infinite are expressed using \qquad or \qquad
- \qquad indicate that the end value is included in the interval
- \qquad indicate that the end value is NOT included in the interval
- A \qquad bracket is always used at infinity and negative infinity

Example 2: Below are the graphs of common power functions. Use the graph to complete the table.

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \rightarrow-\infty$	End Behaviour as $x \rightarrow \infty$
$y=x$	Linear					
$y=x^{2}$	Quadratic					
$y=x^{3}$	Cubic					

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \rightarrow-\infty$	End Behaviour as $x \rightarrow \infty$
$y=x^{4}$	Quartic					
$y=x^{5}$	Quintic					
$y=x^{6}$	Sextic					

Line Symmetry

A graph has line symmetry if there is a vertical line $x=a$ that divides the graph into two parts such that each part is a reflection of the other.

Note:

Point Symmetry

A graph has point point symmetry about a point (a, b) if each part of the graph on one side of (a, b) can be rotated 180° to coincide with part of the graph on the other side of (a, b).

Note:

Example 3: Write each function in the appropriate row of the second column of the table. Give reasons for your choices.
$y=2 x$
$y=5 x^{6}$
$y=-3 x^{2}$
$y=x^{7}$
$y=-\frac{2}{5} x^{9} \quad y=-4 x^{5} \quad y=x^{10} \quad y=-0.5 x^{8}$

End Behaviour	Functions	Reasons
Q3 to Q1		
Q2 to Q4		
Q2 to Q1		
Q3 to Q4		

Example 4: For each of the following functions

i) State the domain and range
ii) Describe the end behavior
iii) Identify any symmetry

b)

c)

i) Domain: Range:	
ii) As ___ and as	
The graph	adrant
iii)	

i) Domain: Range:
ii) As \qquad and as \qquad
The graph extends from quadrant \qquad to \qquad
iii)

