<mark>L1 – 1.1 – Power Functions Lesson</mark> MHF4U *Jensen*

Things to Remember About Functions

- A relation is a function if for every *x*-value there is only 1 corresponding *y*-value. The graph of a relation represents a function if it passes the <u>vertical line test</u>, that is, if a vertical line drawn anywhere along the graph intersects that graph at no more than one point.
- The **DOMAIN** of a function is the complete set of all possible values of the independent variable (*x*)
 - Set of all possible *x*-vales that will output real *y*-values
- The **<u>RANGE</u>** of a function is the complete set of all possible resulting values of the dependent variable (*y*)
 - Set of all possible *y*-values we get after substituting all possible *x*-values
- For the function $f(x) = (x-1)^2 + 3$
 - $\circ \quad \mathrm{D}: \{X \in \mathbb{R}\}$

$$\circ \quad \mathrm{R}: \{Y \in \mathbb{R} | y \ge 3\}$$

- The degree of a function is the highest exponent in the expression
 - $f(x) = 6x^3 3x^2 + 4x 9$ has a degree of <u>3</u>
- An <u>ASYMPTOTE</u> is a line that a curve approaches more and more closely but never touches.

The function $y = \frac{1}{x+3}$ has two asymptotes:

Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq -3$. This is why the vertical line x = -3 is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line y = 0 is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at y = 0.

Polynomial Functions

A *polynomial function* has the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0$$

- *n* Is a whole number
- *x* Is a variable
- the **<u>coefficients</u>** a_0, a_1, \dots, a_n are real numbers
- the **<u>degree</u>** of the function is *n*, the exponent of the greatest power of *x*
- a_n , the coefficient of the greatest power of x, is the <u>leading coefficient</u>
- a_0 , the term without a variable, is the <u>constant term</u>
- The domain of a polynomial function is the set of real numbers $D: \{X \in \mathbb{R}\}$
- The range of a polynomial function may be all real numbers, or it may have a lower bound or an upper bound (but not both)
- The graph of polynomial functions do not have horizontal or vertical asymptotes
- The graphs of polynomial functions of degree 0 are <u>horizontal lines</u>. The shapes of other graphs depends on the degree of the function. Five typical shapes are shown for various degrees:

A **power function** is the simplest type of polynomial function and has the form:

$$f(x) = ax^n$$

- *a* is a real number
- *x* is a variable
- *n* is a whole number

Example 1: Determine which functions are polynomials. State the degree and the leading coefficient of each polynomial function.

a) $g(x) = \sin x$	This is a trigonometric function, not a polynomial function.
b) $f(x) = 2x^4$	This is a polynomial function of degree 4. The leading coefficient is 2
c) $y = x^3 - 5x^2 + 6x - 8$	This is a polynomial function of degree 3. The leading coefficient is 1.
d) $g(x) = 3^x$	This is not a polynomial function but an exponential function, since the base is a number and the exponent is a variable.

Interval Notation

In this course, you will often describe the features of the graphs of a variety of types of functions in relation to real-number values. Sets of real numbers may be described in a variety of ways:

1) as an inequality $-3 < x \le 5$

2) interval (or bracket) notation (-3, 5]

3) graphically on a number line -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Note:

- Intervals that are infinite are expressed using ∞ (infinity) or $-\infty$ (negative infinity)
- **<u>Square brackets</u>** indicate that the end value is included in the interval
- **<u>Round brackets</u>** indicate that the end value is NOT included in the interval
- A <u>round</u> bracket is always used at infinity and negative infinity

Example 2: Below are the graphs of common power functions. Use the graph to complete the table.

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \to -\infty$	End Behaviour as $x \to \infty$
y = x	Linear	$ \begin{array}{c} $	(−∞,∞)	(−∞,∞)	$y \rightarrow -\infty$ Starts in quadrant 3	$y \rightarrow \infty$ Ends in quadrant 1
$y = x^2$	Quadratic		(−∞,∞)	[0,∞)	$y \rightarrow \infty$ Starts in quadrant 2	$y \rightarrow \infty$ Ends in quadrant 1
$y = x^3$	Cubic		(−∞,∞)	(−∞,∞)	$y \rightarrow -\infty$ Starts in quadrant 3	$y \rightarrow \infty$ Ends in quadrant 1

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \to -\infty$	End Behaviour as $x \to \infty$
$y = x^4$	Quartic	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(−∞,∞)	[0,∞)	$y \rightarrow \infty$ Starts in quadrant 2	$y \rightarrow \infty$ Ends in quadrant 1
$y = x^5$	Quintic	96 64 32 -4 -2 0 2 $4x-32-64-96$	(−∞,∞)	[−∞,∞)	$y \rightarrow -\infty$ Starts in quadrant 3	$y \rightarrow \infty$ Ends in quadrant 1
$y = x^6$	Sextic	$ \begin{array}{c} $	(−∞,∞)	[0,∞)	$y \rightarrow \infty$ Starts in quadrant 2	$y \rightarrow \infty$ Ends in quadrant 1

Key Features of EVEN Degree Power Functions

When the leading coefficient (a) is positive		When the leading coefficient (a) is negative		
End behaviour	as $x \to -\infty, y \to \infty$ and as $x \to \infty, y \to \infty$ Q2 to Q1	End behaviour	as $x \to -\infty, y \to -\infty$ and as $x \to \infty, y \to -\infty$ Q3 to Q4	
Domain	$(-\infty,\infty)$	$(-\infty,\infty)$ Domain		
Range	[0,∞)	Range	[0, −∞)	
Example: $f(x) = 2x^4$		Example: $f(x) =$	$-3x^2$	

Line Symmetry

A graph has line symmetry if there is a vertical line x = a that divides the graph into two parts such that each part is a reflection of the other.

Note: The graphs of even degree power functions have line symmetry about the vertical line x = 0 (the y-axis).

Key Features of ODD Degree Power Functions

When the leading coefficient (a) is positive		When the leading coefficient (a) is negative		
End behaviour	as $x \to -\infty, y \to -\infty$ and as $x \to \infty, y \to \infty$ Q3 to Q1	End behaviour	as $x \to -\infty$, $y \to \infty$ and as $x \to \infty$, $y \to -\infty$ Q2 to Q4	
Domain	$(-\infty,\infty)$	Domain	$(-\infty,\infty)$	
Range	(−∞,∞)	Range	(−∞,∞)	
Example: $f(x) = 3$	x ⁵	Example: $f(x) =$	$-2x^3$	

Point Symmetry

A graph has point point symmetry about a point (a, b) if each part of the graph on one side of (a, b) can be rotated 180° to coincide with part of the graph on the other side of (a, b).

Note: The graph of odd degree power functions have point symmetry about the origin (0, 0).

(a, b)

Example 3: Write each function in the appropriate row of the second column of the table. Give reasons for your choices.

y = 2x $y = 5x^6$ $y = -3x^2$ $y = x^7$

 $y = -\frac{2}{5}x^9$ $y = -4x^5$ $y = x^{10}$ $y = -0.5x^8$

End Behaviour	Functions	Reasons
	y = 2x	Odd exponent
Q3 to Q1	$y = x^7$	Positive leading coefficient
	$y = -\frac{2}{r^9}$	Odd exponent
Q2 to Q4	$y = 5^{x}$ $y = -4x^{5}$	Negative leading coefficient
	$v = 5r^6$	Even exponent
Q2 to Q1	$y = x^{10}$	Positive leading coefficient
	$v = -3x^2$	Even exponent
Q3 to Q4	$y = -0.5x^8$	Negative leading coefficient

Example 4: For each of the following functions

i) State the domain and rangeii) Describe the end behavioriii) Identify any symmetry

