In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding graph, and you will examine the effect of repeated factor on the graph of a polynomial function.

Factored Form Investigation

If we want to graph the polynomial function $f(x)=x^{4}+3 x^{3}+x^{2}-3 x-2$ accurately, it would be most useful to look at the factored form version of the function:
$f(x)=(x+1)^{2}(x+2)(x-1)$
Let's start by looking at the graph of the function and making connections to the factored form equation.
Graph of $f(x)$:

From the graph, answer the following questions...
a) What is the degree of the function?
b) What is the sign of the leading coefficient?
c) What are the x-intercepts?
d) What is the y-intercept?
e) The x-intercepts divide the graph in to into four intervals. Write the intervals in the first row of the table. In the second row, choose a test point within the interval. In the third row, indicate whether the function is positive (above the x-axis) or negative (below the y-axis).

Interval				
Test Point				
Sign of $\boldsymbol{f}(\boldsymbol{x})$				

f) What happens to the sign of the of $f(x)$ near each x-intercept?

Conclusions from investigation:

The x-intercepts of the graph of the function correspond to the roots (zeros) of the corresponding equation. For example, the function $f(x)=(x-2)(x+1)$ has x-intercepts at \qquad and \qquad . These are the roots of the equation $(x-2)(x+1)=0$.

If a polynomial function has a factor $(x-a)$ that is repeated n times, then $x=a$ is a zero of \qquad n.

Order - the exponent to which each factor in an algebraic expression is raised.
For example, the function $f(x)=(x-3)^{2}(x-1)$ has a zero of order \qquad at $x=3$ and a zero of order
\qquad at $x=1$.

The graph of a polynomial function changes sign at zeros of \qquad order but does not change sign at zeros of \qquad order.

Shapes based on order of zero:

Example 1: Analyzing Graphs of Polynomial Functions

For each graph,
i) the least possible degree and the sign of the leading coefficient
ii) the x-intercepts and the factors of the function
iii) the intervals where the function is positive/negative

i)
ii)
iii)

Interval				
Sign of $f(x)$				

b)

i)
ii)
iii)

Interval				
Sign of $f(x)$				

Degree	Leading Coefficient	End Behaviour	x-intercepts	\boldsymbol{y}-intercept
The exponent on x when all factors of x are multiplied together	The product of all the x coefficients	Use degree and sign of leading coefficient to determine this	Set each factor equal to zero and solve for x	Set $x=0$ and solve for y
Add the exponents on the factors that include an x.				

Sketch a graph of each polynomial function:
a) $f(x)=(x-1)(x+2)(x+3)$

Degree	Leading Coefficient	End Behaviour	\boldsymbol{x}-intercepts	\boldsymbol{y}-intercept

b) $g(x)=-2(x-1)^{2}(x+2)$

Degree	Leading Coefficient	End Behaviour	\boldsymbol{x}-intercepts	\boldsymbol{y}-intercept

c) $h(x)=-(2 x+1)^{3}(x-3)$

Degree	Leading Coefficient	End Behaviour	\boldsymbol{x}-intercepts	

d) $j(x)=x^{4}-4 x^{3}+3 x^{2}$

Note: must put in to factored form to find x-intercepts

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept

Example 3: Representing the Graph of a Polynomial Function with its Equation
a) Write the equation of the function shown below:

Steps:

1) Write the equation of the family of polynomials using factors created from x intercepts
2) Substitute the coordinates of another point (x, y) into the equation.
3) Solve for a
4) Write the equation in factored form
b) Find the equation of a polynomial function that is degree 4 with zeros -1 (order 3) and 1 , and with a y-intercept of -2 .
