•	,
•	L3 – 1.3 – Factored Form Polynomial Functions Lesson
•	MHF4U
•	Jensen
••	

In this section, you will investigate the relationship between the factored form of a polynomial function and the *x*-intercepts of the corresponding graph, and you will examine the effect of repeated factor on the graph of a polynomial function.

Factored Form Investigation

If we want to graph the polynomial function $f(x) = x^4 + 3x^3 + x^2 - 3x - 2$ accurately, it would be most useful to look at the factored form version of the function:

 $f(x) = (x+1)^2(x+2)(x-1)$

Let's start by looking at the graph of the function and making connections to the factored form equation.

Graph of f(x):

d) What is the y-intercept?

e) The *x*-intercepts divide the graph in to into four intervals. Write the intervals in the first row of the table. In the second row, choose a test point within the interval. In the third row, indicate whether the function is positive (above the *x*-axis) or negative (below the *y*-axis).

Interval		
Test Point		
Sign of $f(x)$		

f) What happens to the sign of the of f(x) near each x-intercept?

Conclusions from investigation:

The *x*-intercepts of the graph of the function correspond to the roots (zeros) of the corresponding equation. For example, the function f(x) = (x - 2)(x + 1) has *x*-intercepts at _____ and ____. These are the roots of the equation (x - 2)(x + 1) = 0.

If a polynomial function has a factor (x - a) that is repeated *n* times, then x = a is a zero of ______ *n*.

Order – the exponent to which each factor in an algebraic expression is raised.

For example, the function $f(x) = (x - 3)^2(x - 1)$ has a zero of order _____ at x = 3 and a zero of order _____ at x = 1.

The graph of a polynomial function changes sign at zeros of ______ order but does not change sign at zeros of ______ order.

Shapes based on order of zero:

Example 1: Analyzing Graphs of Polynomial Functions

For each graph,

i) the least possible degree and the sign of the leading coefficient

i)

ii)

- ii) the *x*-intercepts and the factors of the function
- iii) the intervals where the function is positive/negative

۱.							
,	Interval						
	Sign of $f(x)$						

::)			
,	Interval		
	Sign of $f(x)$		

Example 2: Analyze Factored Form Equations to Sketch Graphs

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
The exponent on x when all factors of x are multiplied together OR Add the exponents on the factors that include an x	The product of all the <i>x</i> coefficients	Use degree and sign of leading coefficient to determine this	Set each factor equal to zero and solve for <i>x</i>	Set $x = 0$ and solve for y

Sketch a graph of each polynomial function:

a) f(x) = (x-1)(x+2)(x+3)

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept

		4		
		3		
 		 2	 	
		1		
 -3	2	 0	 2	
 -5	-2	 	2	
		- 1		
		-2		
		-4		
 		 -5	 	
 		-6		
		ĭ		
		-7		
 		 -8		
		-9		
		-10		
		1	1	

b) $g(x) = -2(x-1)^2(x+2)$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
		4	I	I

			3			
			2			
			1-			
	-3	-2 ·	-1 0	1 :	2	3
			-1			
			-2			
			-3			
			-4			
			-5			
			-6			
			-7			
			-8			
10			-9			
-10			-10			

c)
$$h(x) = -(2x+1)^3(x-3)$$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept

		140				
		80				
		60				
 		20				
 -2	-1	0	1	2	3	4
		-20				

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept

Example 3: Representing the Graph of a Polynomial Function with its Equation

a) Write the equation of the function shown below:

Steps:

1) Write the equation of the family of polynomials using factors created from *x*-intercepts

2) Substitute the coordinates of another point (*x*, *y*) into the equation.

3) Solve for *a*

4) Write the equation in factored form

b) Find the equation of a polynomial function that is degree 4 with zeros -1 (order 3) and 1, and with a *y*-intercept of -2.