<mark>L3 – 1.3 – Factored Form Polynomial Functions Lesson</mark> MHF4U Jensen

In this section, you will investigate the relationship between the factored form of a polynomial function and the *x*-intercepts of the corresponding graph, and you will examine the effect of repeated factor on the graph of a polynomial function.

Factored Form Investigation

If we want to graph the polynomial function $f(x) = x^4 + 3x^3 + x^2 - 3x - 2$ accurately, it would be most useful to look at the factored form version of the function:

 $f(x) = (x+1)^2(x+2)(x-1)$

Lets start by looking at the graph of the function and making connections to the factored form equation.

Graph of f(x):

d) What is the *y*-intercept?

The *y*-intercept is the point (0, -2)

e) The *x*-intercepts divide the graph in to into four intervals. Write the intervals in the first row of the table. In the second row, choose a test point within the interval. In the third row, indicate whether the function is positive (above the *x*-axis) or negative (below the *y*-axis).

Interval	(−∞,−2)	(-2, -1)	(-1,1)	(1,∞)
Test Point	$f(-3) = (-3+1)^2(-3+2)(-3-1) = (-2)^2(-1)(-4) = 16$	f(-1.5) = (-1.5 + 1) ² (-1.5 + 2)(-1.5 - 1) = (-0.5) ² (0.5)(-2.5) = -0.3125	$f(0) = (0+1)^2(0+2)(0-1) = (1)^2(2)(-1) = -2$	$f(3) = (3+1)^2(3+2)(3-1) = (4)^2(5)(2) = 160$
Sign of $f(x)$	+	_	1	+

f) What happens to the sign of the of f(x) near each x-intercept?

At (-2, 0) which is order 1, it changes signs At (-1, 0) which is order 2, the sign does NOT change At (1, 0) which is order 1, it changes signs

Conclusions from investigation:

The *x*-intercepts of the graph of the function correspond to the roots (zeros) of the corresponding equation. For example, the function f(x) = (x - 2)(x + 1) has *x*-intercepts at $\underline{2}$ and $\underline{-1}$. These are the roots of the equation (x - 2)(x + 1) = 0.

If a polynomial function has a factor (x - a) that is repeated *n* times, then x = a is a zero of <u>ORDER</u> *n*.

Order – the exponent to which each factor in an algebraic expression is raised.

For example, the function $f(x) = (x - 3)^2(x - 1)$ has a zero of order <u>two</u> at x = 3 and a zero of order <u>one</u> at x = 1.

The graph of a polynomial function changes sign at zeros of <u>odd</u> order but does not change sign at zeros of <u>even</u> order.

Shapes based on order of zero:

Example 1: Analyzing Graphs of Polynomial Functions

For each graph,

- i) the least possible degree and the sign of the leading coefficient
- **ii)** the *x*-intercepts and the factors of the function
- iii) the intervals where the function is positive/negative

- i) Three *x*-intercepts of order 1, so the least possible degree is 3. The graph goes from Q2 to Q4 so the leading coefficient is negative.
- ii) The x-intercepts are -5, 0, and 3. The factors are (x + 5), x, and (x - 3)

1)	Interval	(-∞,-5)	(-5, G)	(0, 3)	(3,∞)
	Sign of $f(x)$	+	_	- +	<u> </u>

- i) Two *x*-intercepts of order 1, and one *x*-intercept of order 2, so the least possible degree is 4. The graph goes from Q2 to Q1 so the leading coefficient is positive.
- ii) The *x*-intercepts are -2, 1, and 3. The factors are (x + 2), (x - 1), and $(x - 3)^2$

iii)					
111)	Interval	(-&,-2)	(-2, 1)	(1, 3)	(3,∞)
	Sign of $f(x)$	+	· ·	+	、 <i>, ,</i> , +

Example 2: Analyze Factored Form Equations to Sketch Graphs

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
The exponent on <i>x</i> when all factors of <i>x</i> are multiplied together	The product of all the <i>x</i> coefficients	Use degree and sign of leading coefficient to determine this	Set each factor equal to zero and solve for <i>x</i>	Set $x = 0$ and solve for y
OR				
Add the exponents on the factors that include an <i>x</i> .				

Sketch a graph of each polynomial function:

a) f(x) = (x-1)(x+2)(x+3)

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
The product of all	The product of all	Cubic with a	The <i>x</i> -intercepts	Set x equal to 0 and
factors of <i>x</i> is:	the <i>x</i> coefficients	positive leading	are 1, -2, and -3	solve:
$(x)(x)(x) = x^{3}$ The function is cubic. DEGREE 3	is: (1)(1)(1) = 1 Leading Coefficient is 1	coefficient extends from: Q3 to Q1	(1, 0) (-2, 0) (-3, 0)	y = (0 - 1)(0 + 2)(0 + 3) y = (-1)(2)(3) y = -6 The y-intercept is at (0, -6)
DEGREE 3	Coefficient is 1			

b) $g(x) = -2(x-1)^2(x+2)$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
The product of all	The product of all	Cubic with a	The <i>x</i> -intercepts	Set <i>x</i> equal to 0 and
factors of <i>x</i> is:	the <i>x</i> coefficients	negative leading	are 1 (order 2),	solve:
$(u^2)(u) = u^3$	is:	coefficient extends	and -2.	$v = -2(0-1)^2(0+2)$
$(x^{-})(x) = x^{-}$		from:		y = (-2)(1)(2)
The function is	$(-2)(1)^2(1) = -2$		(1, 0)	y = -4
cubic.		Q2 to Q4	(-2, 0)	The y-intercept is
	Leading			at (0, -4)
DEGREE 3	Coefficient is -2			
		3		
		2		
		1 (1.0)		
			2	
		-1		
		-2		
		-3		
		-44 (0, -4)		
		5		
		-6		
		-9		
	.	-10		
c) $h(x) = -(2x + 1)$	$x^{3}(x-3)$		\mathbf{V}	

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
The product of all	The product of all	A quartic with a	The x-intercepts	Set x equal to 0 and
factors of <i>x</i> is:	the <i>x</i> coefficients	negative leading	are $-\frac{1}{2}$ (order 3).	solve:
$(x^3)(x) = x^4$	is:	coefficient extends from:	and 3.	$y = -[2(0) + 1]^{3}[0 - 3]$ y = (-1)(1)(-3)
The function is quartic.	$(-1)(2)^3(1) = -8$	Q3 to Q4	$\left(-\frac{1}{2},0\right)$	y = 3 The y-intercept is
DEGREE 4	Coefficient is -8			at (0, 3)

d)
$$j(x) = x^4 - 4x^3 + 3x^2$$

$$j(x) = x^{2}(x^{2} - 4x + 3)$$

$$j(x) = x^{2}(x - 3)(x - 1)$$

Note: must put in to factored form to find *x*-intercepts

Example 3: Representing the Graph of a Polynomial Function with its Equation

a) Write the equation of the function shown below:

The function has *x*-intercepts at -2 and 3. Both are of order 2. $f(x) = k(x+2)^{2}(x-3)^{2}$ $4 = k(2+2)^{2}(2-3)^{2}$ $4 = k(4)^{2}(-1)^{2}$ 4 = 16k $k = \frac{1}{4}$ $f(x) = \frac{1}{4}(x+2)^{2}(x-3)^{2}$

Steps:

1) Write the equation of the family of polynomials using factors created from *x*-intercepts

2) Substitute the coordinates of another point (*x*, *y*) into the equation.

3) Solve for a

4) Write the equation in factored form

b) Find the equation of a polynomial function that is degree 4 with zeros -1 (order 3) and 1, and with a *y*-intercept of -2.

$$f(x) = k(x + 1)^{3}(x - 1)$$

-2 = k(0 + 1)^{3}(0 - 1)
-2 = k(1)^{3}(-1)
-2 = -1k
k = 2

 $f(x) = 2(x+1)^3(x-1)$

