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In	this	section,	you	will	investigate	the	relationship	between	the	factored	form	of	a	polynomial	function	
and	the	𝑥-intercepts	of	the	corresponding	graph,	and	you	will	examine	the	effect	of	repeated	factor	on	the	
graph	of	a	polynomial	function.	
	
Factored	Form	Investigation	
	
If	we	want	to	graph	the	polynomial	function	𝑓 𝑥 = 𝑥$ + 3𝑥' + 𝑥( − 3𝑥 − 2	accurately,	it	would	be	most	
useful	to	look	at	the	factored	form	version	of	the	function:	
	
𝑓 𝑥 = 𝑥 + 1 ( 𝑥 + 2 𝑥 − 1 	
	
Lets	start	by	looking	at	the	graph	of	the	function	and	making	connections	to	the	factored	form	equation.	
	

Graph	of	𝑓(𝑥):	
	
	 	 From	the	graph,	answer	the	following	questions…	
	
	 	 a)	What	is	the	degree	of	the	function?	
	
	
	
	 	 b)	What	is	the	sign	of	the	leading	coefficient?	
	
	
	
	 	 c)	What	are	the	𝑥-intercepts?	
	
	
	
	 	 d)	What	is	the	𝑦-intercept?	
	
	
	

e)	The	𝑥-intercepts	divide	the	graph	in	to	into	four	intervals.	Write	the	intervals	in	the	first	row	of	the	
table.	In	the	second	row,	choose	a	test	point	within	the	interval.	In	the	third	row,	indicate	whether	the	
function	is	positive	(above	the	𝑥-axis)	or	negative	(below	the	𝑦-axis).	
	
Interval	 (−∞,−2)	 (−2,−1)	 (−1, 1)	 (1,∞)	

Test	Point	

𝑓 −3 	
	
= −3 + 1 ( −3 + 2 −3 − 1 	
= −2 ((−1)(−4)	
= 16	
	

𝑓 −1.5 	
	
= −1.5 + 1 ( −1.5 + 2 −1.5 − 1 	
= −0.5 ((0.5)(−2.5)	
= −0.3125	
	

𝑓 0 	
	
= 0 + 1 ( 0 + 2 0 − 1 	
= 1 ((2)(−1)	
= −2	
	

𝑓 3 	
	
= 3 + 1 ( 3 + 2 3 − 1 	
= 4 ((5)(2)	
= 160	
	

Sign	of	𝒇(𝒙)	 +	 −	 −	 +	
	
f)	What	happens	to	the	sign	of	the	of	𝑓(𝑥)	near	each	𝑥-intercept?		

	
	
	

The	highest	degree	term	is	𝑥$,	therefore	the	function	is	degree	4	(quartic)	

The	leading	coefficient	is	1,	therefore	the	leading	coefficient	is	POSITIVE	

The	𝑥-intercepts	are	(−2, 0)	of	order	1,	(−1, 0)	of	order	2,	and	(1, 0)	of	order	1	

The	𝑦-intercept	is	the	point	(0,−2)	

At	(-2,	0)	which	is	order	1,	it	changes	signs	
At	(-1,	0)	which	is	order	2,	the	sign	does	NOT	change		
At	(1,	0)	which	is	order	1,	it	changes	signs	
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Conclusions	from	investigation:	
	
The	𝑥-intercepts	of	the	graph	of	the	function	correspond	to	the	roots	(zeros)	of	the	corresponding	
equation.	For	example,	the	function	𝑓 𝑥 = (𝑥 − 2)(𝑥 + 1)	has	𝑥-intercepts	at	2	and	-1.	These	are	the	
roots	of	the	equation	 𝑥 − 2 𝑥 + 1 = 0.		
	
If	a	polynomial	function	has	a	factor	(𝑥 − 𝑎)	that	is	repeated	𝑛	times,	then	𝑥 = 𝑎	is	a	zero	of	ORDER	𝑛.		
	
Order	–	the	exponent	to	which	each	factor	in	an	algebraic	expression	is	raised.		
	
For	example,	the	function	𝑓 𝑥 = 𝑥 − 3 ((𝑥 − 1)	has	a	zero	of	order	two	at	𝑥 = 3	and	a	zero	of	order	
one	at	𝑥 = 1.	
	
The	graph	of	a	polynomial	function	changes	sign	at	zeros	of	odd	order	but	does	not	change	sign	at	zeros	
of	even	order.		
	
Shapes	based	on	order	of	zero:	
	

𝑓 𝑥 = 0.01(𝑥 − 1) 𝑥 + 2 ((𝑥 − 4)'	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

ORDER	2	
	
(-2,	0)	is	an	𝑥-intercept	
of	order	2.	Therefore,	it	
doesn’t	change	sign.	
	
“Bounces	off”	𝑥-axis.		
	
Parabolic	shape.	

ORDER	1	
	
(1,	0)	is	an	𝑥-intercept	of	
order	1.	Therefore,	it	
changes	sign.	
	
“Goes	straight	through”	
𝑥-axis.	
	
Linear	Shape	

ORDER	3	
	
(4,	0)	is	an	𝑥-intercept	of	
order	3.	Therefore,	it	
changes	sign.	
	
“S-shape”	through	𝑥-axis.	
	
Cubic	shape.	
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Three	𝑥-intercepts	of	order	1,	so	the	least	possible	degree	is	3.	The	
graph	goes	from	Q2	to	Q4	so	the	leading	coefficient	is	negative.	

The	𝑥-intercepts	are	-5,	0,	and	3.		
The	factors	are	(𝑥 + 5),	𝑥,	and	(𝑥 − 3)	

Two	𝑥-intercepts	of	order	1,	and	one	𝑥-intercept	of	order	2,	so	the	least	
possible	degree	is	4.	The	graph	goes	from	Q2	to	Q1	so	the	leading	
coefficient	is	positive.	

The	𝑥-intercepts	are	-2,	1,	and	3.		
The	factors	are	(𝑥 + 2),	(𝑥 − 1),	and	(𝑥 − 3)(	

Example	1:	Analyzing	Graphs	of	Polynomial	Functions	
	
For	each	graph,		
	

i) the	least	possible	degree	and	the	sign	of	the	leading	coefficient	
ii) the	𝑥-intercepts	and	the	factors	of	the	function	
iii) the	intervals	where	the	function	is	positive/negative	

	
	
a)		 i)		
	
	
	
		 ii)	
	 	
	
	
	 	 	 	 	 		iii)		
	
	
	
	
	
b)	 	i)		
	
	
	
		 ii)		
	 	
	
	
	 	 	 	 	 		iii)		
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Example	2:	Analyze	Factored	Form	Equations	to	Sketch	Graphs	
	

Degree	 Leading	Coefficient	 End	Behaviour	 𝒙-intercepts	 𝒚-intercept	
The	exponent	on	𝑥	
when	all	factors	of	𝑥	
are	multiplied	
together	
	

OR	
	

Add	the	exponents	
on	the	factors	that	
include	an	𝑥.	

The	product	of	all	
the	𝑥	coefficients	

Use	degree	and	
sign	of	leading	
coefficient	to	
determine	this	

Set	each	factor	
equal	to	zero	and	
solve	for	𝑥	
	
	

Set	𝑥 = 0	and	solve	
for	𝑦	

	
	
Sketch	a	graph	of	each	polynomial	function:	
	
a)	𝑓 𝑥 = (𝑥 − 1)(𝑥 + 2)(𝑥 + 3)	
	

Degree	 Leading	Coefficient	 End	Behaviour	 𝒙-intercepts	 𝒚-intercept	
The	product	of	all	
factors	of	𝑥	is:	
	

𝑥 𝑥 𝑥 = 𝑥'	
	
The	function	is	
cubic.	

	
DEGREE	3	

The	product	of	all	
the	𝑥	coefficients	
is:	
	
1 1 1 = 1	
	

Leading	
Coefficient	is	1	

Cubic	with	a	
positive	leading	
coefficient	extends	
from:	
	

Q3	to	Q1	

The	𝒙-intercepts	
are	1,	-2,	and	-3	
	
(1,	0)	
(-2,	0)	
(-3,	0)	

Set	𝑥	equal	to	0	and	
solve:	
	
𝑦 = 0 − 1 0 + 2 0 + 3 	
𝑦 = (−1)(2)(3)	
𝑦 = −6	
	
The	𝒚-intercept	is	

at	(0,	-6)	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	
	
	
	
	
	

trevorjensen
Pencil



b)	𝑔 𝑥 = −2 𝑥 − 1 ((𝑥 + 2)	
	

Degree	 Leading	Coefficient	 End	Behaviour	 𝒙-intercepts	 𝒚-intercept	
The	product	of	all	
factors	of	𝑥	is:	
	

𝑥( 𝑥 = 𝑥'	
	
The	function	is	
cubic.	

	
DEGREE	3	

The	product	of	all	
the	𝑥	coefficients	
is:	
	
−2 1 ( 1 = −2	
	

Leading	
Coefficient	is	−𝟐	

Cubic	with	a	
negative	leading	
coefficient	extends	
from:	
	

Q2	to	Q4	

The	𝒙-intercepts	
are	1	(order	2),	
and	-2.	
	
(1,	0)	
(-2,	0)	

Set	𝑥	equal	to	0	and	
solve:	
	
𝑦 = −2 0 − 1 ( 0 + 2 	
𝑦 = (−2)(1)(2)	
𝑦 = −4	
	
The	𝒚-intercept	is	

at	(0,	-4)	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
c)	ℎ 𝑥 = − 2𝑥 + 1 '(𝑥 − 3)	
	

Degree	 Leading	Coefficient	 End	Behaviour	 𝒙-intercepts	 𝒚-intercept	
The	product	of	all	
factors	of	𝑥	is:	
	

𝑥' 𝑥 = 𝑥$	
	
The	function	is	
quartic.	

	
DEGREE	4	

The	product	of	all	
the	𝑥	coefficients	
is:	
	
−1 2 ' 1 = −8	
	

Leading	
Coefficient	is	−𝟖	

A	quartic	with	a	
negative	leading	
coefficient	extends	
from:	
	

Q3	to	Q4	

The	𝒙-intercepts	
are	−𝟏

𝟐
	(order	3),	

and	3.	
	
−A
(
, 0 		

(3, 0)	

Set	𝑥	equal	to	0	and	
solve:	
	
𝑦 = − 2 0 + 1 '[0 − 3]	
𝑦 = (−1)(1)(−3)	
𝑦 = 3	
	
The	𝒚-intercept	is	

at	(0,	3)	
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d)	𝑗 𝑥 = 𝑥$ − 4𝑥' + 3𝑥(	
	

𝑗 𝑥 = 𝑥((𝑥( − 4𝑥 + 3)	
𝑗 𝑥 = 𝑥((𝑥 − 3)(𝑥 − 1)	

	
	
	

Degree	 Leading	Coefficient	 End	Behaviour	 𝒙-intercepts	 𝒚-intercept	
The	product	of	all	
factors	of	𝑥	is:	
	

𝑥( 𝑥 (𝑥) = 𝑥$	
	
The	function	is	
quartic.	

	
DEGREE	4	

The	product	of	all	
the	𝑥	coefficients	
is:	
	
1 ( 1 (1) = 1	
	

Leading	
Coefficient	is	𝟏	

A	quartic	with	a	
positive	leading	
coefficient	extends	
from:	
	

Q2	to	Q1	

The	𝒙-intercepts	
are	0	(order	2),	3,	
and	1.	
	
(0, 0)	
(3, 0)	
(1, 0)	

Set	𝑥	equal	to	0	and	
solve:	
	
𝑦 = 0 ((0 − 3)(0 − 1)	
𝑦 = (0)(−3)(−1)	
𝑦 = 0	
	
The	𝒚-intercept	is	

at	(0,	0)	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Example	3:	Representing	the	Graph	of	a	Polynomial	Function	with	its	Equation	
	
a)	Write	the	equation	of	the	function	shown	below:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Note:	must	put	in	to	factored	
form	to	find	𝑥-intercepts	

Steps:	
	
1)	Write	the	equation	of	
the	family	of	polynomials	
using	factors	created	from	
𝑥-intercepts	
	
2)	Substitute	the	
coordinates	of	another	
point	(𝑥, 𝑦)	into	the	
equation.		
	
3)	Solve	for	𝑎	
	
4)	Write	the	equation	in	
factored	form	

The	function	has	𝑥-intercepts	at	-2	
and	3.	Both	are	of	order	2.	
	
𝑓(𝑥) = 𝑘(𝑥 + 2)((𝑥 − 3)(	
	

4 = 𝑘(2 + 2)((2 − 3)(	
	

4 = 𝑘(4)((−1)(	
	

4 = 16𝑘	
	

𝑘 =
1
4	

	

𝒇(𝒙) =
𝟏
𝟒 (𝒙 + 𝟐)

𝟐(𝒙 − 𝟑)𝟐	
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b)	Find	the	equation	of	a	polynomial	function	that	is	degree	4	with	zeros	−1	(order	3)	and	1,	and	with	a		
𝑦-intercept	of	−2.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

𝑓(𝑥) = 𝑘(𝑥 + 1)'(𝑥 − 1)	
	

−2 = 𝑘(0 + 1)'(0 − 1)	
	
−2 = 𝑘(1)'(−1)	
	
−2 = −1𝑘	
	
𝑘 = 2	
	
	

𝒇(𝒙) = 𝟐(𝒙 + 𝟏)𝟑(𝒙 − 𝟏)	
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