1) Match each graph with the corresponding function.
A) $y=2(x-3)^{3}+1$
B) $y=-\frac{1}{3}(x+1)^{3}-1$
C) $y=0.2(x-4)^{4}-3$
D) $y=-1.5(x+3)^{4}+4$

2) List a good set of key points for the following parent functions:

$f(x)=x^{2}$	
x	y

$f(x)=x^{3}$	
x	y

$f(x)=x^{4}$	
x	y

$f(x)=x^{5}$	
x	y

3) Identify the a, k, d and c values and explain what transformation is occurring to the parent function:
a) $f(x)=-2(x-1)^{2}$
b) $g(x)=\left[-\frac{1}{3}(x+5)\right]^{4}-1$
4) Write the full equation given the parent function and the transforming function:
a) $f(x)=x^{5}, g(x)=-3 f[2(x+5)]-1$
b) $f(x)=x^{3}, \quad g(x)=\frac{1}{2} f\left[-\frac{1}{4}(x-4)\right]+7$
5) For the following questions, use the key points of the parent function to perform transformations. Graph the parent and transformed function. Write the equation of the transformed function.
a) $f(x)=x^{4} \quad g(x)=\frac{1}{2} f[-(x-5)]+1$

b) $f(x)=x^{3} \quad g(x)=-f[-2(x+1)]+6$

6) Write an equation for the function that results from the given transformations.
a) The function $f(x)=x^{4}$ is translated 2 units to the left and 3 units up.
b) The function $f(x)=x^{5}$ is stretched horizontally by a factor of 5 and translated 12 units to the left.
c) The function $f(x)=x^{4}$ is stretched vertically by a factor of 3 , reflected vertically in the x-axis, and translated 6 units down and 1 unit to the left.
d) The function $f(x)=x^{6}$ is reflected vertically in the x-axis, stretched horizontally by a factor of 5 , reflected horizontally in the y-axis, and translated 3 units down and 1 unit to the right.

ANSWER KEY

1) $C A B D$
2)

$f(x)=x^{2}$	
x	y
-2	4
-1	1
0	0
1	1
2	4

$f(x)=x^{3}$	
x	y
-2	-8
-1	-1
0	0
1	1
2	8

$f(x)=x^{4}$	
x	y
-2	16
-1	1
0	0
1	1
2	16

$f(x)=x^{5}$	
x	y
-2	-32
-1	-1
0	0
1	1
2	32

3) a) $a=-2$; vertical reflection and vertical stretch by a factor of $2(-2 y)$ $d=1$; shift right 1 unit $(x+1)$
b) $k=-\frac{1}{3}$; horizontal reflection and horizontal stretch by a factor of $3(-3 x)$
$d=-5$; shift left 5 units $(x-5)$
$c=-1$; shift down 1 unit $(y-1)$
4) a) $g(x)=-3[2(x+5)]^{5}-1$
b) $g(x)=\frac{1}{2}\left[-\frac{1}{4}(x-4)\right]^{3}+7$
5) a)

$f(x)=x^{4}$	
x	y
-2	16
-1	1
0	0
1	1
2	16

$g(x)=\frac{1}{2}[-(x-5)]^{4}+1$	
$-x+5$	$\frac{y}{2}+1$
7	9
6	1.5
5	1
4	1.5
3	9

b)

$f(x)=x^{3}$	
x	y
-2	-8
-1	-1
0	0
1	1
2	8

$g(x)=-[-2(x+1)]^{3}+6$	
$\frac{x}{-2}-1$	$-y+6$
0	14
-0.5	7
-1	6
-1.5	5
-2	-2

d) $g(x)=-\left[-\frac{1}{5}(x-1)\right]^{6}-3$

