In this section, you will learn how to determine the factors of a polynomial function of degree 3 or greater.

Part 1: Remainder Theorem Refresher

a) Use the remainder theorem to determine the remainder when $f(x)=x^{3}+4 x^{2}+x-6$ is divided by $x+2$
$f(-2)=(-2)^{3}+4(-2)^{2}+(-2)-6$
$f(-2)=-8+16-2-6$

Remainder Theorem: When a polynomial function $P(x)$ is divided by $x-b$, the remainder is $P(b)$; and when it is divided by $a x-b$, the remainder is $P\left(\frac{b}{a}\right)$, where a and b are integers, and $a \neq 0$.
$f(-2)=0$
The remainder when divided by $x+2$ is 0 . This means that $x+2$ is a factor of the dividend.
b) Verify your answer to part a) by completing the division using long division or synthetic division.

Note: I chose synthetic since it is a linear divisor of the form $x-b$.
$x^{2} x \# R$

$$
x^{3}+4 x^{2}+x-6=(x+2)\left(x^{2}+2 x-3\right)
$$

Factor Theorem:
$x-b$ is a factor of a polynomial $P(x)$ if and only if $P(b)=0$. Similarly, $a x-b$ is a factor of $P(x)$ if and only if $P\left(\frac{b}{a}\right)=0$.

Example 1: Determine if $x-3$ and $x+2$ are factors of $P(x)=x^{3}-x^{2}-14 x+24$
$P(3)=(3)^{3}-(3)^{2}-14(3)+24$
$P(3)=27-9-42+24$
$P(3)=0$

Since the remainder is $\underline{\mathbf{0}}, x-3$ divides evenly into $P(x)$; that means $x-3$ is a factor of $P(x)$.
$P(-2)=(-2)^{3}-(-2)^{2}-14(-2)+24$
$P(-2)=-8-4+28+24$
$P(-2)=40$

Since the remainder is not $\underline{0}, x+2$ does not divide evenly into $P(x)$; that means $x+2$ is not a factor of $P(x)$.

Part 2: How to determine a factor of a Polynomial With Leading Coefficient 1

You could guess and check values of b that make $P(b)=0$ until you find one that works...
Or you can use the Integral Zero Theorem to help.

Integral Zero Theorem

If $x-b$ is a factor of a polynomial function $P(x)$ with leading coefficient 1 and remaining coefficients that are integers, then \boldsymbol{b} is a factor of the constant term of $P(x)$.

Note: Once one of the factors of a polynomial is found, division is used to determine the other factors.

Example 2: Factor $x^{3}+2 x^{2}-5 x-6$ fully.
Let $P(x)=x^{3}+2 x^{2}-5 x-6$
Find a value of b such that $P(b)=0$. Based on the factor theorem, if $P(b)=0$, then we know that $x-b$ is a factor. We can then divide $P(x)$ by that factor.

The integral zero theorem tells us to test factors of $\mathbf{- 6}$.
Test $\pm 1, \pm 2, \pm 3$, and ± 6. Once one factor is found, you can stop testing and use that factor to divide $P(x)$.
$P(1)=(1)^{3}+2(1)^{2}-5(1)-6$
$P(1)=1+2-5-6$
$P(1)=-8$

Since $\underline{P(1)} \neq 0$, we know that $\underline{x-1}$ is NOT a factor of $P(x)$.
$P(2)=(2)^{3}+2(2)^{2}-5(2)-6$
$P(2)=8+8-10-6$
$P(2)=0$

Since $P(2)=0$, we know that $x-2$ is a factor of $P(x)$.
You can now use either long division or synthetic division to find the other factors

Method 1: Long division

$$
\begin{gathered}
x - 2 \longdiv { x ^ { 2 } + 4 x + 3 } \\
\frac{x^{3}-2 x^{2}}{4 x^{2}-5 x} \\
\frac{4 x^{2}-8 x}{3 x-6} \\
\frac{3 x-6}{R=0}
\end{gathered} \begin{aligned}
x^{3}+2 x^{2}-5 x-6 & =(x-2)\left(x^{2}+4 x+3\right) \quad \text { factor further } \\
& =(x-2)(x+3)(x+1)
\end{aligned}
$$

Method 2: Synthetic Division

Factor Further
if possible
3)

$$
=(x-2)(x+3)(x+1)
$$

Example 3: Factor $x^{4}+3 x^{3}-7 x^{2}-27 x-18$ completely.
Let $P(x)=x^{4}+3 x^{3}-7 x^{2}-27 x-18$
Find a value of b such that $P(b)=0$. Based on the factor theorem, if $P(b)=0$, then we know that $x-b$ is a factor. We can then divide $P(x)$ by that factor.

The integral zero theorem tells us to test factors of $\mathbf{- 1 8}$.
Test $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9$ and ± 18. Once one factor is found, you can stop testing and use that factor to divide $P(x)$.
$P(1)=(1)^{4}+3(1)^{3}-7(1)^{2}-27(1)-18$

$$
P(1)=-48
$$

$$
\begin{aligned}
& P(-1)=(-1)^{4}+3(-1)^{3}-7(-1)^{2}-27(-1)-18 \\
& P(-1)=0 \\
& x+1 \text { IS a factor of } P(x) .
\end{aligned}
$$

$x-1$ is NOT a factor of $P(x)$.
Since $\boldsymbol{P}(-\mathbf{1})=\mathbf{0}$, this tell us that $\boldsymbol{x}+\mathbf{1}$ is a factor. Use division to determine the other factor.

We can now further divide $x^{3}+2 x^{2}-9 x-18$ using division again or by factoring by grouping.

Method 1: Division

Test factors of -18
$f(-2)=(-2)^{3}+2(-2)^{2}-9(-2)-18$ $f(-2)=0$
$x+2$ is a factor

Method 2: Factoring by Grouping

$$
f(x)=x^{3}+2 x^{2}-9 x-18
$$

Group the first 2 terms and the last 2 terms and separate with an addition sign.

$$
f(x)=\left(x^{3}+2 x^{2}\right)+(-9 x-18)
$$

Common factor within each group

$$
f(x)=x^{2}(x+2)-9(x+2)
$$

Factor out the common binomial

$$
f(x)=(x+2)\left(x^{2}-9\right)
$$

Therefore,
$x^{4}+3 x^{3}-7 x^{2}-27 x-18=(x+1)\left(x^{3}+2 x^{2}-9 x-18\right)$

$$
\begin{aligned}
& =(x+1)(x+2)\left(x^{2}-9\right) \\
& =(x+1)(x+2)(x-3)(x+3)
\end{aligned}
$$

Example 4: Try Factoring by Grouping Again
$x^{4}-6 x^{3}+2 x^{2}-12 x$

Note: Factoring by grouping does not always work...but when it does, it saves you time!
$=\left(x^{4}-6 x^{3}\right)+\left(2 x^{2}-12 x\right)$
$=x^{3}(x-6)+2 x(x-6)$
$=(x-6)\left(x^{3}+2 x\right)$
$=(x-6)(x)\left(x^{2}+2\right)$

The integral zero theorem can be extended to include polynomials with leading coefficients that are not 1. This extension is known as the rational zero theorem.

Rational Zero Theorem:

Suppose $P(x)$ is a polynomial function with integer coefficients and $x=\frac{b}{a}$ is a zero of $P(x)$, where a and b are integers and $a \neq 0$. Then,

- b is a factor of the constant term of $P(x)$
- $\quad a$ is a factor of the leading coefficient of $P(x)$
- $(a x-b)$ is a factor of $P(x)$

Example 5: Factor $P(x)=3 x^{3}+2 x^{2}-7 x+2$
We must start by finding a value of $\frac{b}{a}$ where $P\left(\frac{b}{a}\right)=0$.
b must be a factor of the constant term. Possible values for b are: $\pm \mathbf{1}, \pm \mathbf{2}$
a must be a factor of the leading coefficient. Possible values of a are: $\pm \mathbf{1}, \pm 3$
Therefore, possible values for $\frac{b}{a}$ are: $\pm \mathbf{1}, \pm \frac{1}{3}, \pm 2, \pm \frac{2}{3}$
Test values of $\frac{b}{a}$ for x in $P(x)$ to find a zero.
$P(1)=3(1)^{3}+2(1)^{2}-7(1)+2=0$
Since $\underline{P(1)}=\mathbf{0}, \boldsymbol{x}-\mathbf{1}$ is a factor of $P(x)$. Use division to find the other factors.

$$
\begin{aligned}
& \begin{array}{c|cccc}
1 & 3 & 2 & -7 & 2 \\
& 4 & 3 & 5 & -2 \\
\hline \times) & 3 & 5 & -2 & 0 \\
& x^{2} & x & \# & R
\end{array} \\
& 3 x^{3}+2 x^{2} \quad \begin{array}{c}
p:-6 \\
5: 5 \text { (6and-1 }
\end{array} \\
& =(x-1)\left[3 x^{2}+6 x-1 x-2\right] \\
& =(x-1)\left[\left(3 x^{2}+6 x\right)+(-1 x-2)\right] \\
& =(x-1)[3 x(x+2)-1(x+2)] \\
& =(x-1)(x+2)(3 x-1)
\end{aligned}
$$

Example 6: Factor $P(x)=2 x^{3}+x^{2}-7 x-6$
Possible values for b are: $\pm \mathbf{1}, \pm 2, \pm 3, \pm 6$
Possible values of a are: $\pm \mathbf{1}, \pm 2$
Therefore, possible values for $\frac{b}{a}$ are: $\pm 1, \pm \frac{1}{2}, \pm 2, \pm 3, \pm \frac{3}{2}, \pm 6$

$$
f(-1)=2(-1)^{3}+(-1)^{2}-7(-1)-6=0
$$

Therefore, $x+1$ is a factor of $P(x)$

Part 4: Application Question
Example 7: When $f(x)=2 x^{3}-m x^{2}+n x-2$ is divided by $x+1$, the remainder is -12 and $x-2$ is a factor. Determine the values of m and n.

Hint: Use the information given to create 2 equations and then use substitution or elimination to solve.

$$
\begin{aligned}
f(-1) & =2(-1)^{3}-m(-1)^{2}+n(-1)-2 \\
-12 & =-2-m-n-2 \\
(1)-8 & =-m-n
\end{aligned}
$$

$$
\text { (2) }-14=-4 m+2 n
$$

(1) $-8=-m-n \xrightarrow{\times 2}-16=-2 m-2 n$
(2)

$$
\begin{aligned}
-14=-4 m+2 n \rightarrow \frac{-14}{} & =-4 m+2 n \\
-30 & =-6 m \\
5 & =m
\end{aligned}
$$

subs $m=5$ into (1) or (2)

$$
\begin{aligned}
& -8=-5-n \\
& n=3
\end{aligned}
$$

