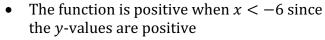
In this section, you will learn the meaning of a polynomial inequality and examine methods for solving polynomial inequalities.

Part 1: Intro to Inequalities

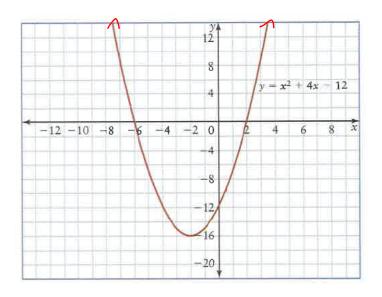
Task: Read the following on your own

Examine the graph of $y = x^2 + 4x - 12$.

The x-intercepts are 6 and -2. These correspond to the zeros of the function $y = x^2 + 4x - 12$. Note that the factored form version of the function is y = (x + 6)(x - 2). By moving from left to right along the x-axis, we can make the following observations:

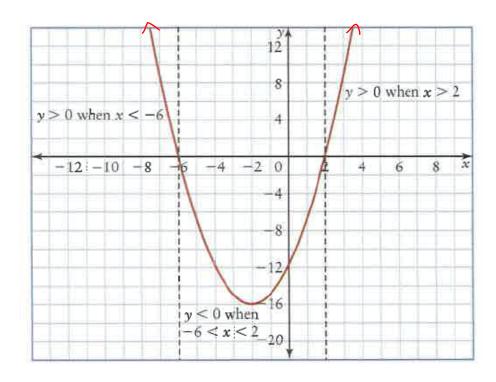


- The function is negative when -6 < x < 2 since the *y*-values are negative
- The function is positive when x > 2 since the y-values are positive.



The zeros -6 and 2 divide the x-axis into three intervals. In each interval, the function is either positive or negative. The information can be summarized in a table:

Interval	<i>x</i> < -6	-6 < x < 2	<i>x</i> > 2
Sign of Function	+	_	+



Polynomial Inequalities

A polynomial inequality results when the equal sign in a polynomial equation is replaced with an inequality symbol.

The real zeros of a polynomial function, or x-intercepts of the corresponding graph, divide the x-axis into intervals that can be used to solve a polynomial inequality.

Part 1: Inequalities and Number Lines

Example 1: Write an inequality that corresponds to the values of *x* shown on each number line

a)

 $x \leq 4$

OR

 $(-\infty, 4]$

$$3 \le x < 9$$

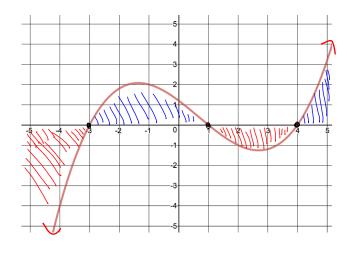
OR

[3, 9)

Part 2: Solve an Inequality given the Graph

Example 2: Use the graph of the function f(x) to answer the following inequalities...

$$f(x) = 0.1(x-1)(x+3)(x-4)$$



a)
$$f(x) < 0$$

$$f(x) < 0$$
 when: $x < -3$ or $1 < x < 4$

$$(-\infty, -3) \cup (1,4)$$

b)
$$f(x) \ge 0$$

$$f(x) \ge 0$$
 when: $-3 \le x \le 1$ or $x \ge 4$

$$[-3,1] \cup [4,\infty)$$

Part 2: Solve Linear Inequalities

Note: Solving linear <u>inequalities</u> is the same as solving linear <u>equations</u>. However, when both sides of an inequality are multiplied or divided by a negative number, the inequality sign must be reversed.

Example 3: Solve each inequality

a)
$$x - 8 \ge 3$$

b)
$$-4 - 2x < 12$$

$$-4-2\chi < 12$$
 $-2\chi < 16$
Reverse inequality when dividing by a negative
 $\chi > -8$

Part 2: Solve Inequalities of Degree 2 and Higher

Steps for solving polynomial inequalities algebraically:

- 1) Use inverse operations to move all terms to one side of the inequality
- 2) Factor the polynomial to determine the zeros of the corresponding equation
- **3)** Find the interval(s) where the function is positive or negative by either:
 - **a.** Graphing the function using the zeros, leading coefficient, and degree
 - **b.** Make a factor table and test values in each interval

Example 4: Solve each polynomial inequality algebraically

a) $2x^2 + 3x - 9 > 0$

when is it above the x-axis?

Method 1: Graph the inequality

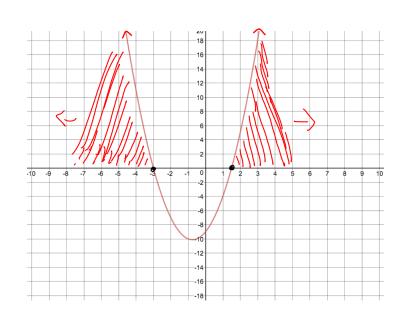
$$2x^{2}+3x-9>0 \quad Sin 3 \quad 6and -3$$

$$(2x^{2}+6x)+(-3x-9)>0$$

$$2x(x+3)-3(x+3)>0$$

$$(x+3)(2x-3)>0$$

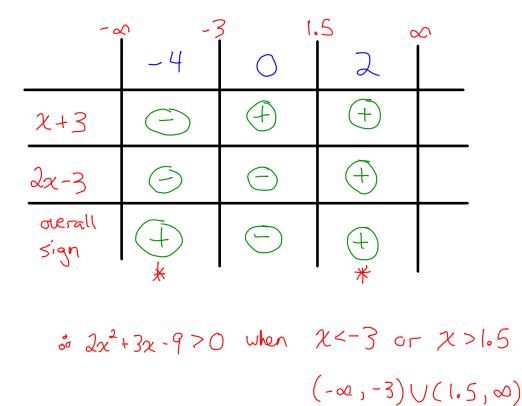
$$2x^2 + 3x - 9 > 0$$
 when... $x < -3$ or $x > 1.5$ $(-\infty, -3) \cup (1.5, \infty)$



Method 2: Factor Table (sign chart)

To make a factor table:

- Use *x*-intercepts and vertical asymptotes to divide in to intervals
- Use a test point within each interval to find the sign of each factor
- Determine the overall sign of the product by multiplying signs of each factor within each interval.



b)
$$-2x^3 - 6x^2 + 12x \le -16$$

Method 1: Graph the inequality

: Graph the inequality
$$-2x^{3}-6x^{2}+12x+16 \le 0$$

$$-2(x^{3}+3x^{2}-6x-8) \le 0$$

$$-2(x^{3}+3x^{2}-6x-8) \le 0$$

$$-2(x^{3}+3x^{2}-6x-8) \le 0$$

$$-2(x^{3}+3x^{2}-6x-8) \le 0$$

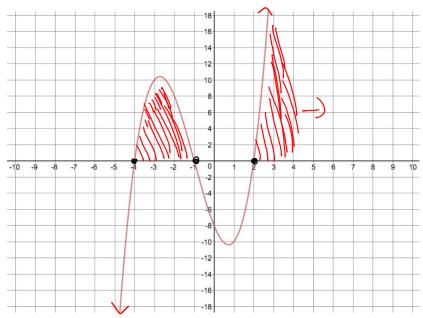
factors of -8 are: =1, =2, and =3

$$(\chi+1)(\chi^2+2\chi-8) \ge 0$$

2-int at -1, -4, and 2

Positive leading coefficient

Degree 3



Solution: $-4 \le x \le -1$ or $x \ge 2$

$$[-4,-1] \cup [2,\infty)$$

Method 2: Factor Table (sign chart)

-	م د	_] ;) <u> </u>	0
	-5	-2	0	3	
X+1	9	()	(+)	(+)	
2+4	<u>-</u>	(+)	4	(†)	
1/-2	0	0	<u>O</u>	\bigoplus	
aeæl(sign	0	(+)	<u>©</u>	*	

Solution: [-4,-17 U[2,0)

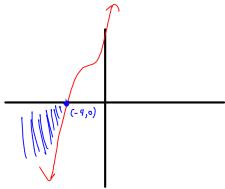
c)
$$x^3 + 4x^2 + 6x < -24$$

$$\chi^{3}+4\chi^{2}+6\chi+3440$$

$$\chi^{2}(\chi+4)+6(\chi+4)40$$
factor by grouping
$$(\chi+4)(\chi^{2}+6)<0$$

$$\chi^{2}(\chi+4)=0$$
real solutions

-∞ -4 ∞					
	-5	0			
X+4	①	4			
x2+6	+	9			
sign		(



Part 2: Applications of Inequalities

3) The price, p, in dollars, of a stock t years after 1999 can be modeled by the function $p(t) = 0.5t^3 - 10^{-5}$ $5.5t^2 + 14t$. When will the price of the stock be more than \$90?

$$\frac{(t-10)(t^2-t+18)>0}{7}$$

$$\frac{7}{b^2-4ac} = (-1)^2-4(1X18)$$

$$2-id = d(0,0)$$

$$\frac{5}{a} = -71$$

$$\frac{a}{a} = -6$$

$$\frac{a}{a} = -6$$

$$\frac{a}{a} = -6$$

