Section 3.3a – Exponent Laws

MPM1D Jensen

Part 1: Exponent Laws Investigation

Product of Powers Rule: Complete the following table

Product	Expanded Form	Single Power
3 ² ·3 ⁴	$(3 \times 3) \times (3 \times 3 \times 3 \times 3)$ = $3 \times 3 \times 3 \times 3 \times 3 \times 3$	3 ⁶
43.43		
$2^{3} \cdot 2^{4} \cdot 2^{2}$		
k ³ · k ⁵		
create your own example		

Describe any trends you see:

Quotient of Powers Rule: Complete the following table

Quotient	Expanded Form	Single Power
5 ⁵ ÷ 5 ³	_5x5x5x5x5 5x5x5	52
$7^4 \div 7^1$		
$10^6 \div 10^4$		
$x^8 \div x^5$		
create your own example		

Describe any trends you see:

Power of a Power Rule: Complete the following table

Power of a Power	Expanded Form	Single Power
$(2^2)^3$	$(2^2) \times (2^2) \times (2^2)$ = $(2 \times 2) \times (2 \times 2) \times (2 \times 2)$ = $2 \times 2 \times 2 \times 2 \times 2 \times 2$	2^6
(5 ³) ⁴		
(104)2		
Create your own example		

Describe any trends you see:

Summary of Exponent Laws:

Product Rule	$x^{a} \cdot x^{b} =$
Quoutient Rule	$x^a \div x^b =$
Power of a Power Rule	$(x^a)^b =$
Zero Exponent Rule	$x^0 =$

Part 2: Summary of Exponent Laws

Product of Powers Rule

When multiplying powers with the **same base**, keep the same _____and _____ the exponents.

General Rule:

$$x^a \cdot x^b =$$

Quotient of Powers Rule

When dividing powers with the **same base**, keep the same _____and _____ the exponents.

General Rule:

$$x^a \div x^b =$$

Power of a Power Rule

A power of a power can be written as a single power by ______ the exponents.

General Rule:

$$(x^a)^b =$$

Power of a Quotient

When you have a single power with a rational base, you can evaluate it by applying the exponent to the _____ and the _____.

Rule:

$$\left(\frac{a}{h}\right)^x =$$

Power of a Product

When you have a single power with a base that is a product, the exponent gets put on to each ______ in the brackets. Please notice that this only works when inside the brackets is a single term (no + or – signs separating terms)

Rule:

$$(ab)^x =$$

$x^{a} \cdot x^{b} = x^{a+b}$

Part 3: Apply the Product Rule

Write each product as a single power. Then, evaluate the power where possible.

1)
$$3^2 \times 3^3$$

2)
$$5^2 \times 5 \times 5^2$$

3)
$$(x^2)(x^7)$$

4)
$$(a^4)(a^4)(a^5)$$

5)
$$(-2)^4 \times (-2)^3$$

6)
$$\left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^2$$

Part 4: Apply the Quotient Rule

Write each quotient as a single power. Then, evaluate the power where possible.

7)
$$8^7 \div 8^5$$

8)
$$4^7 \div 4 \div 4^3$$

9)
$$x^{70} \div x^{40} \div x^{29}$$

10)
$$\frac{x^7}{x^3}$$

11)
$$\frac{(-0.5)^6}{(-0.5)^3}$$

12)
$$\frac{\left(\frac{3}{4}\right)^3 \times \left(\frac{3}{4}\right)^2}{\left(\frac{3}{4}\right)^5}$$

13)
$$\frac{a^5a^2}{a^6a^1}$$

Note: An exponent of zero always gives the answer of _____

Part 5: Apply the Power of a Power Rule

$$(x^a)^b = x^{a \times b}$$

Write each power of a power as a single power. Then, evaluate the power where possible.

14)
$$(3^2)^4$$

15)
$$[(-2)^3]^4$$

$$16) \left[\left(\frac{2}{3} \right)^2 \right]^2$$

17)
$$(3ab^7)^2$$

Note: for #16 you will need the power of a quotient rule and #17 you will need the power of a product rule.

Product of Powers Rule	$x^a \cdot x^b = x^{a+b}$
Quotient of Powers Rule	$x^a \div x^b = x^{a-b}$
Power of a Power Rule	$(x^a)^b = x^{a \times b}$
Power of a Quotient	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Power of a Product	$(ab)^x = a^x \cdot b^x$
Zero Exponent Rule	$x^0 = 1$
Negative Exponent Rule	$x^{-a} = \frac{1}{x^a}$