

Brain Teaser:

In the diagram, what is the area of the triangle?

A hockey team gets 2 points for a win, 1 point for a tie, and 0 points for a loss.

a) Write an equation for determining the amount of points a team has:

```
Points = 2(wins) + 1(ties) + 0(losses)
```

b) If the Penguins win 54 games, tie 8, and lose 20; how many points will they get?

Points = 2(54) + 1(8) + 0(20)

Points = 108+8+0

Points = 116

Part 2: Terms

Term: an expression formed by the **product** of <u>numbers</u> and or <u>variables</u>.

Example of a term:

 $4x^{2}$

The number in front of the variable is called the <u>coefficient</u>.

Identify the coefficient and the variable for the expression $4x^2$:

Coefficient: <u>4</u>

Variable: <u>2</u>

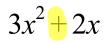
Practice with Terms

Identify the coefficient and the variable of each term:

a) Jim earns \$7 per hour at his part-time job. If he works for *x* hours, his earnings, in dollars, are 7*x*.

b) The depth, in meters, of a falling stone in a well after t seconds is $-4.9t^2$

c) The area of a triangle with base b and height h is $\frac{1}{2}bh$


d) The area of a square with side length k is k^2

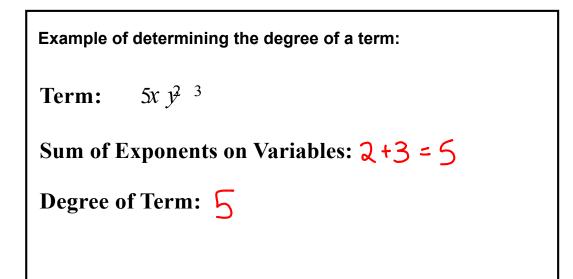
Expression	Coefficient	Variable	Comments
7x	7	R	
-4.9t ²	-4.9	t	The negative sign is included with the coefficient
之 bh	- 10	bh	The variable can consist of more than one letter or symbol
k²	1	k ^a	When the coefficient is not shown, it is 1.

Part 3: Polynomials

Polynomial: an algebraic expression consisting of one or more terms connected by <u>addition</u> or <u>subtraction</u> operators

Example of a polynomial:

A polynomial can be classified by the number of terms it has: A <u>MONOMIAL</u> is a polynomial with only one term . A <u>BINOMIAL</u> is a polynomial with two terms . A <u>TRINOMIAL</u> is a polynomial with three terms . A <u>4-TERM POLYNOMIAL</u> is a polynomial with four terms .


Classify each polynomial by the number of terms it has:

Polynomial	Number of Terms	Type of Polynomial
$3x^2 + 2x$	2	BINOMIAL
-2 <i>m</i>	1	MONOMIAL
$4x^2 - 3xy + y^2$	3	TRINDMIAL
a-2b+c-3	4	4-TERM POLYNOMIAL

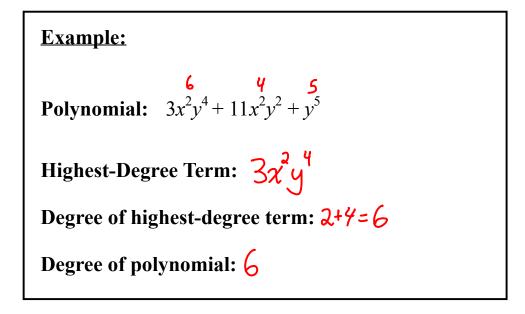
Hint: You can find the number of terms by looking for theaddition and subtraction operators that separate the terms

Part 4: Degree of a Term

Degree of a term: the sum of the <u>exponents</u> on the variables in a term

Term	Sum of Exponents	Degree of Term
x ²	a	2
3y ⁴	4	4
0.7 <i>uv</i>	<u>1+1</u> = 2	2
$-2a^2b$	2+1=3	3
-5	0	0

Find the degree of each term by adding the exponents of the variables:


Note:

- a variable that appears to have no exponent actually has an exponent of $\underline{1}$

- a constant has a degree of O

Part 5: Degree of a Polynomial

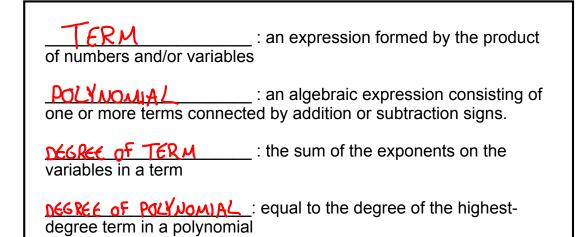
The *degree of a polynomial* is equal to the degree of the <u>highest-degree term</u> in the polynomial

Find the degree of each polynomial:

Polynomial	Term with Highest Degree	Degree of Term with Highest Degree	Degree of Polynomial
<i>x</i> + 3	X	1	1
$5x^2 - 2x$	5x ²	2	2
$3y^3 + 0.2y - 1$	3y ³	3	З
$7x^2y^4 + x^6y$	x*y	6+1 = 7	7

Part 6: Apply Our Knowledge!

Mr. Jensen works part time as a golf instructor. He earns \$125 for the season, plus \$20 for each children`s lesson and \$30 for each adult lesson that he gives.


a) Write an expression that describes Mr. Jensen's total earnings for the season. Identify the variables and what they stand for.

Earnings = 20 (child lessons) + 30 (adult lessons) + 125

b) If Mr. Jensen gave **8 children's** lessons and **6 adult lessons**, what were his total earnings?

Earnings =
$$20(8) + 30(6) + 125$$

Earnings = $160 + 180 + 125$
Earnings = \$465

Review of Terms

