3.4 Communicate With Algebra

Brain Teaser:

In the diagram, what is the area of the triangle?

$$
\begin{aligned}
A_{\text {triangle }} & =\frac{(\text { base })(\text { height })}{2} \\
& =\frac{(12)(9)}{2} \\
& =54 \text { units }^{2}
\end{aligned}
$$

Part 1: DO IT NOW

A hockey team gets 2 points for a win, 1 point for a tie, and 0 points for a loss.
a) Write an equation for determining the amount of points a team has:

$$
\text { Points }=2(\text { wins })+1 \text { (ties })+O(\text { losses })
$$

b) If the Penguins win 54 games, tie 8, and lose 20; how many points will they get?

$$
\begin{aligned}
& \text { Points }=2(54)+1(8)+0(20) \\
& \text { Points }=108+8+0 \\
& \text { Points }=116
\end{aligned}
$$

Part 2: Terms

Term: an expression formed by the product of numbers and or variables.

Example of a term:

$4 x \quad 2$

The number in front of the variable is called the coefficient.
Identify the coefficient and the variable for the expression $4 x^{2}$:
Coefficient: \qquad
Variable: \qquad

Identify the coefficient and the variable of each term:
a) Jim earns $\$ 7$ per hour at his part-time job. If he works for x hours, his earnings, in dollars, are $7 x$.
b) The depth, in meters, of a falling stone in a well after t seconds is $-4.9 t^{2}$
c) The area of a triangle with base b and height h is $\frac{1}{2} b h$
d) The area of a square with side length k is k^{2}

Expression	Coefficient	Variable	Comments
$7 x$	7	χ	
$-4.9 t^{2}$	-4.9	t^{2}	The negative sign is included with the coefficient
$\frac{1}{2} b h$	$\frac{1}{2}$	$6 h$	The variable can consist of more than one letter or symbol
k^{2}	1	K^{2}	When the coefficient is not shown, it is 1.

Part 3: Polynomials

Polynomial: an algebraic expression consisting of one or more terms connected by addition or subtraction operators

Example of a polynomial:

$$
3 x^{2}+2 x
$$

A polynomial can be classified by the number of terms it has:

A MONOMIAL is a polynomial with only one term .

A BINOMIAL is a polynomial with two terms .
A TRINOMIAL is a polynomial with three terms
A 4-TERM POLYNOMIAL_ is a polynomial with four terms.

Classify each polynomial by the number of terms it has:

Polynomial	Number of Terms	Type of Polynomial
$3 x^{2}+2 x$	2	BINOMIAL
$-2 m$	1	MONOMIAL
$4 x^{2}-3 x y+y^{2}$	3	TRINOMIAL
$a-2 b+c-3$	4	4 -TERM POLYNOMIAL

Hint: You can find the number of terms by looking for theaddition and subtraction operators that separate the terms

Part 4: Degree of a Term

Degree of a term: the sum of the exponents on the variables in a term

Example of determining the degree of a term:

Term: $\quad 5 x y^{3}$
Sum of Exponents on Variables: $2+3=5$
Degree of Term: 5

Find the degree of each term by adding the exponents of the variables:

Term	Sum of Exponents	Degree of Term
x^{2}	2	2
$3 y^{4}$	4	4
$0.7 u v$	$1+1=2$	2
$-2 a^{2} b$	$2+1=3$	3
-5	\bigcirc	0

Note:

- a variable that appears to have no exponent actually has an exponent of 1 - a constant has a degree of O

Part 5: Degree of a Polynomial

The degree of a polynomial is equal to the degree of the highest-degree term in the polynomial

Example:

Polynomial: $\begin{gathered}\mathbf{6}^{6} \\ 3 x^{2} y^{4}+11 x^{2} y^{2}+y^{5}\end{gathered}$
Highest-Degree Term: $3 x^{2} y^{4}$
Degree of highest-degree term: $2+4=6$
Degree of polynomial: 6

Find the degree of each polynomial:

Polynomial	Term with Highest Degree	Degree of Term with Highest Degree	Degree of Polynomial
$x+3$	χ	1	1
$5 x^{2}-2 x$	$5 x^{2}$	2	2
$3 y^{3}+0.2 y-1$	$3 y^{3}$	3	3
$7 x^{2} y^{4}+x^{6} y$	$x^{6} y$	$6+1=7$	7

Part 6: Apply Our Knowledge!

Mr. Jensen works part time as a golf instructor. He earns $\$ 125$ for the season, plus $\$ 20$ for each children`s lesson and $\$ 30$ for each adult lesson that he gives.
a) Write an expression that describes Mr. Jensen's total earnings for the season. Identify the variables and what they stand for.

Eamings $=20($ child lessons $)+30($ (adult lessons $)+125$
b) If Mr. Jensen gave 8 children's lessons and 6 adult lessons, what were his total earnings?

$$
\begin{aligned}
& \text { Earnings }=20(8)+30(6)+125 \\
& \text { Earnings }=160+180+125 \\
& \text { Earnings }=\$ 465
\end{aligned}
$$

Review of Terms

> TERM : an expression formed by the product of numbers and/or variables

> POLYNOMIAL : an algebraic expression consisting of one or more terms connected by addition or subtraction signs.

> DEGREE of TERM : the sum of the exponents on the variables in a term

> DEGREE OF POLYNOMIAL : equal to the degree of the highestdegree term in a polynomial

