3.7 Distributive Property

Part 1: DO IT NOW!

Write a simplified expression for the area of the rectangle:

Remember: Area of a rectangle $=$ length x width.

Area of the rectangle $=5(4 x+2)$

Before we can simplify the expression we need to learn the distributive property!

Distributive Property

When you apply the distributive property, you are getting rid of the brackets by multiplying everything in the brackets by the term in front of the brackets.

Example:

To apply the distributive property, I must multiply both terms in the bracket by 5 .

$$
=20 x+10
$$

Expand and Simplify the Following:
1)

$$
\begin{aligned}
& 2(5 x+3) \\
& =2(5 x)+2(3) \\
& =10 x+6
\end{aligned}
$$

2)

$$
\begin{aligned}
& -2(7 x-4) \\
& =-2(7 x)-2(-4) \\
& =-14 x+8
\end{aligned}
$$

3)

$$
\begin{aligned}
& -3\left(2 x^{2}-5 x+4\right) \\
= & -3\left(2 x^{2}\right)-3(-5 x)-3(4) \\
= & -6 x^{2}+15 x-12
\end{aligned}
$$

4)

$$
\begin{aligned}
& 2(6 m-3)+3(16+4 m) \\
= & 2(6 m)+2(-3)+3(16)+3(4 m) \\
= & 12 m-6+48+12 m \\
= & 12 m+12 m-6+48 \\
= & 24 m+42
\end{aligned}
$$

Note: Make sure to include the negative sign when distributing the -2 . Follow integer rules for multiplication.

Note: You can also apply the distributive property to trinomials.

Remember: You can collect like terms! Like terms have identical variables (same letters and exponents)

Part 3: Apply Our Knowledge

5) Write an expression for the area of the rectangle in expanded form:

$$
\begin{aligned}
A_{R E A} & =4 x(2 x+3) \\
& =4 x(2 x)+4 x(3) \\
& =8 x^{2}+12 x
\end{aligned}
$$

What is the area of the rectangle if $x=5 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area } & =8 x^{2}+12 x \\
& =8(5)^{2}+12(5) \\
& =8(25)+60 \\
& =200+60 \\
& =260 \mathrm{~cm}^{2}
\end{aligned}
$$

Part 4: Distribute Variables

Example:

$$
\begin{aligned}
& x\left(x^{2}-3\right) \\
& =x^{3}-3 x
\end{aligned}
$$

Expand and Simplify the following:

$$
\text { 6) } \begin{aligned}
& x(x-3) \\
= & x(x)+x(-3) \\
= & x^{2}-3 x \\
& -x(7 x-4) \\
= & -x(7 x)-x(-4) \\
= & -7 x^{2}+4 x
\end{aligned}
$$

8)

$$
\begin{aligned}
& -3 x\left(2 x^{2}-5 x+4\right) \\
& =-6 x^{3}+15 x^{2}-12 x
\end{aligned}
$$

9)

$$
\begin{aligned}
& 3 m(m-5)-\left(2 m^{2}-m\right) \\
= & 3 m^{2}-15 m-2 m^{2}+m \\
= & m^{2}-14 m
\end{aligned}
$$

For this question you can multiply the second polynomial by -1 or use the properties for subtracting polynomials; both give the same result!
10)

$$
\text { 0) } \begin{aligned}
& \frac{1}{2}(2 w-6)-\frac{2}{3}(9 w-6) \\
= & \frac{1}{2}(2 w)+\frac{1}{2}(-6)-\frac{2}{3}(9 w)-\frac{2}{3}(-6) \\
= & \frac{2 w}{2}-\frac{6}{2}-\frac{18 w}{3}+\frac{12}{3} \\
= & w-3-6 w+4 \\
= & -5 w+1
\end{aligned}
$$

Part 5: Nested Brackets
If there is a bracket inside of a bracket, simplify the inner most brackets first and then work your way out.
11)

$$
\text { 1) } \begin{aligned}
& 3[2+5(2 \mathrm{k}-1)] \\
= & 3(2+10 \mathrm{k}-5) \\
= & 3(90 \mathrm{k}-3) \\
= & 30 \mathrm{k}-9
\end{aligned}
$$

