Chapter 4 - Equations

4.1 Solving Simple Equations

Part 1: Do It Now

Byron spent a total of \$11 on two magazines. The cost of one magazine is \$5. You can use an equation to find the cost of the other magazine.

a) Write an equation to represent this situation

X+5=11

b) What value of the variable makes the equation true? Describe the math operations you used to find the value?

X=6 makes the equation true. You can calculate this value by subtracting 5 from 11.

Part 2: Keeping Equations Balanced

An equation is still true if you apply identical operations to both sides

Keeping Equations Balanced

Solve for *x* (what value of *x* makes the equation true?)

x + 4 = 12	when solving an equation, the goal is to isolate the variable	
x + 4 - 4 = 12 - 4	Subtract 4 from the left because you will be left with just x by itself because $4 - 4 = 0$. That means you will have to subtract 4 from the right as well to keep the equation equivalent	
x = 12 - 4		

x = 8

Part 3: Solving Simple Equations Examples

1)
$$x - 2 = 8$$
2) $x + 7 = 5$ $\chi - 2 + 2 = 8 + 2$ $\chi + 7 - 7 = 5 - 7$ $\chi = 8 + 2$ $\chi = 5 - 7$ $\chi = 10$ $\chi = -2$

3)
$$-4 + x = -1$$

 $-4 + 4 + x = -1 + 4$
 $x = -1 + 4$
 $x = -1 + 4$
 $x = 5 - 10$
 $x = 5 - 10$
 $x = -5$

Now You Try!

5)
$$x - 7 = 8$$

 $\chi - 7 + 7 = 8 + 7$
 $\chi = 8 + 7$
 $\chi = 15$
6) $x + 5 = 5$
 $\chi + 5 - 5 = 5 - 5$
 $\chi = 5 - 5$
 $\chi = 0$

Hopefully you are starting to notice that the trick to isolating a variable is to move numbers away from the variable by applying the <u>opposite</u> operation!

Now You Try!

9) – $x = 9$	10) $5x = 30$	11) $\frac{x}{7} = 3$
-1x = 9	$\frac{5x=30}{5}$	7(龚)=7(3)
$\chi = \frac{9}{-1}$	X = <u>30</u> 5	X =7(3)
x = -9	x=6	x=21

Part 4: Two Step Equations

Remember: isolate variable term first!

13)
$$\frac{x}{2} + 4 = 20^{7} - 4$$

 $\frac{\chi}{2} = 20^{7} - 4$
 $\chi(\frac{\chi}{2}) = 2(16)$
 $\chi = 2(16)$
 $\chi = 32$

14)
$$16x + 3 = 15^{3} - 3$$

 $|6x = 15 - 3$
 $|6x = 12$
 $|7x =$

remember to always put fraction in lowest terms!

Before Moving On...

Solve the following equation:

$$\frac{2x}{3} \neq 7 = 15^{3} - 7$$
$$\frac{\partial x}{3} = 15 - 7$$
$$3\left(\frac{\partial x}{3}\right) = 3(8)$$
$$2x = \frac{\partial 4}{2}$$
$$x = \frac{\partial 4}{2}$$
$$x = \frac{\partial 4}{2}$$
$$x = 12$$

Summary of Key Concepts

- To solve an equation means to find the value of the variable that makes the statement true.
- To solve a one step equation, isolate the variable by performing the opposite operation.
- In a two-step equation, isolate the variable term first, then isolate the variable.
- You can check a solution by substituting the root back in to the equation.