4.4 - Modeling With Formulas Worksheet

MPM1D Jensen

1. Rearrange each formula to isolate the variable indicated.

a)
$$P = 4s$$
 for s

b)
$$A = P + I$$
 for P

c)
$$C = 2\pi r$$
 for r

c)
$$y = mx + b$$
 for b

2. Rearrange each formula to isolate the variable indicated.

a)
$$d = mt + b$$
 for m

b)
$$P = 2l + 2w$$
 for w

c)
$$a = \frac{v}{t}$$
 for v

d)
$$v = \frac{d}{t}$$
 for t

3. You can use the formula C=2.5I to obtain an approximate value for converting a length, I, in inches to a length, C, in centimetres.

- a) Use the formula to find the number of centimetres in
 - i) 6 inches

ii) 3 feet (1 foot = 12 inches)

b) Rearrange the formula to express *I* in terms of *C*.

- c) How man inches are in
 - i) 75 cm

ii) 1 m

4. Kwok is a hotel manager. His responsibilities include renting rooms for conferences. The hotel charges \$250 per day plus \$15 per person for the grand ballroom.	
a) Create a formula that relates the cost, \mathcal{C} , in dollars, of renting	ng the ballroom to the number of people, n .
b) How much should Kwok charge to rent the hall for:	
i) 50 people	ii) 100 people
c) Rearrange your formula to express n in terms of \mathcal{C} .	
d) How many people could attend a wedding reception if the	wedding planners have a budget of:

5. The area, *A*, of a square is related to its perimeter, *P*, by the formula $A = \frac{P^2}{16}$

a) Rearrange this formula to express P in terms of A.

ii) \$2000

i) \$4000

b) Find the perimeter of a square with area:
--

i)
$$25~\text{cm}^2$$
 ii) $50~\text{cm}^2$

6. Sometimes the same formula can have many different forms. PV = nRT is a useful formula in chemistry. It relates the characteristics of a gas:

Variable	Characteristic
Р	pressure
V	volume
R	universal gas constant
п	number of moles, or how much gas there is
T	temperature

Rearrange this formula to isolate each variable:

7. The distance an accelerating object travels is related to its initial speed, v, its rate of acceleration, a, and time, t:

$$d = vt + \frac{1}{2}at^2$$

a) Rearrange this formula to isolate v.

b) An object travels 30 m while accelerating at a rate of 6 m/s² for 3 seconds. What was its initial speed?

Answers:

1) a)
$$s = \frac{P}{4}$$
 b) $P = A - I$ c) $r = \frac{C}{2\pi}$ d) $b = y - mx$

2) a)
$$m = \frac{d-b}{t}$$
 b) $w = \frac{P-2l}{2}$ c) $v = at$ d) $t = \frac{d}{v}$ e) $r = \sqrt{\frac{A}{\pi}}$ f) $I = \sqrt{\frac{P}{R}}$

3) a) i) 15 cm ii) 90 cm b)
$$I = \frac{c}{2.5}$$
 c) i) 30 inches ii) 40 inches

4) a)
$$C = 15n + 250$$
 b) i) \$1000 ii) \$1750 c) $n = \frac{C - 250}{15}$ d) i) 250 ppl ii) 116 ppl

5) a)
$$P = \sqrt{16A}$$
 b) i) 20 m ii) 28.3 m

6)
$$P = \frac{nRT}{V}$$
; $V = \frac{nRT}{P}$; $n = \frac{PV}{RT}$; $R = \frac{PV}{nT}$; $T = \frac{PV}{nR}$; $P = \frac{nRT}{V}$

7) a)
$$v = \frac{d}{t} - \frac{at}{2}$$
 b) 1 m/s