Section 5.2 – Partial Variation

MPM1D Jensen

Part 1: DO IT NOW

The Keg Restaurant charges \$100 to reserve a private dining room plus \$40 per person.

- **a)** Write an equation to show the relationship between the cost of the reservation and the number of people attending.
- **b)** What is different about this equation and the equation of a direct variation (y = mx)?
- c) How much will it cost to reserve the room if
 - i) An extended family of 25 want to have dinner to celebrate a recent birth of twins?

ii) The Pittsburgh Penguins want to celebrate their 2009 Cup Victory. There are 24 players and 6 coaches attending the celebration.

Part 2: Recall properties of direct variations

A direct variation is a relationship between two variables in which one variable is a constant multiple of the other.

Model a direct variation in an equation: y = mx

Constant of variation is defined as: $m = rate \ of \ change = \frac{\Delta y}{\Delta x}$

Direct variations are linear relations that always pass through which point on the Cartesian coordinate grid?_____

Part 3: Compare direct variations to partial variations

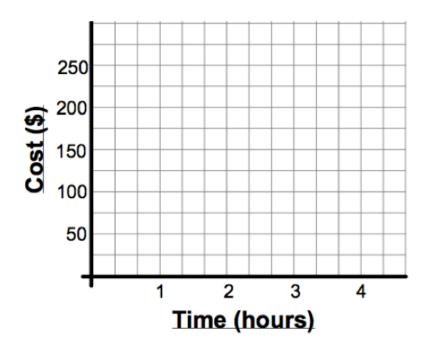
The Tesla electrical company charges \$25 per hour to do electrical work plus a fee of \$50 for the estimate on the proposed work. AC-DC electrical charges \$50 per hour. Write equations to model each relationship. Let *x* represent the number of hours and let *y* represent the total cost.

Tesla Electric company:

AC-DC electrical:

Use the equations to create tables to organize the data for 0 to 4 hours.

Tesla electric company:


Hours (h)	Cost (\$)
0	
1	
2	
3	
4	

AC-DC electrical:

Hours (h)	Cost (\$)
0	
1	
2	
3	
4	

Which relation is a direct variation and how do you know?

Now graph the data for both companies on the same Cartesian coordinate grid.

What is different about the two relations?

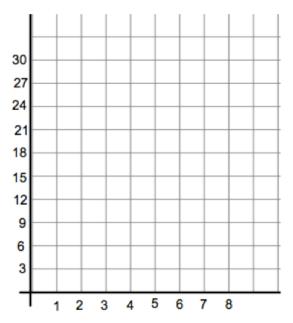
A **PARTIAL VARIATION** is a relationship between two variables in which the dependent variable is the sum of a constant number and a constant multiple of the independent variable.

In general, the graph of a **partial variation** has the following properties:

- it is a straight line which does not pass through the origin (0,0)
- the equation of a partial variation is always in the form y = mx + b
- 'b' is the initial value (y-intercept, fixed cost)
- 'm' is the constant of variation (rate of change, variable cost)

Part 4: Working with Partial Variation

a) Complete the following chart given that y varies partially with x (you may need to determine the constant of variation)


х	У		
0	6		
1	9		
2			
3	15		
4			
	27		

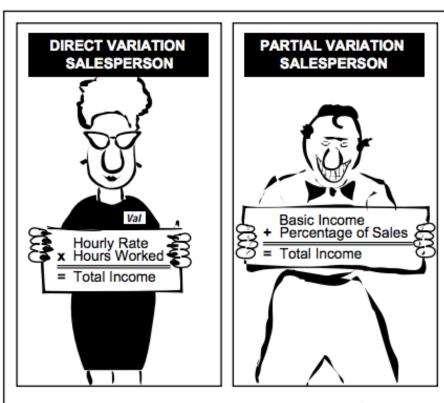
b) What is the initial value of 'y' (y-intercept)?

c) What is the constant of variation (rate of change)?

Remember: $m = \frac{\Delta y}{\Delta x}$

- **d)** Write an equation relating y and x in the form y = mx + b
- e) Graph the relation

Part 5: Application of Partial Variation


A school is planning an awards banquet. The cost of renting the banquet facility and hiring serving staff is \$675. There is an additional cost of \$12 per person for the meal.

a) Identify the fixed cost (initial value; *b*) and the variable cost (constant of variation; *m*)

- **b)** Write an equation to represent this relationship in the form y = mx + b
- c) Use your equation to determine the total cost if 500 people attend the banquet.

Consolidate:

Direct variation		Partial variation			
Table	Graph	Equation	Table	Graph	Equation
Has (0,0) as the initial value	Passes through the origin	y = mx	Has an initial value other than zero	Crosses the dependent axis (y-axis) at an initial value other than 0	y = mx + b
Create an	Create an	Create an	Create an	Create an	Create an example:
example:	example:	example:	example:	example:	

In order to help you understand the content of this unit, Val and Sal have kindly volunteered to assist us by providing a simple but direct comparative illustration.