5.2 Partial Variation

Part 1: DO IT NOW

The Keg Restaurant charges \$100 to reserve a private dining room plus \$40 per person.

a) Write an equation to show the relationship between the cost of the reservation and the number of people attending.

$$y = 40 \times + 100$$
 $y = 40 \times + 100$ $y = 40 \times + 100$ $y = 40 \times + 100$ $y = 40 \times + 100$

b) What is different about this equation and the equation of a direct variation (y = mx)?

There is an additional cost added.

- c) How much will it cost to reserve the room if
 - i) An extended family of 25 want to have dinner to celebrate a recent birth of twins?

$$y = 40(25) + 100$$

 $y = 1000 + 100$ It would cost \$ 1100.
 $y = 1100$

ii) The Pittsburgh Penguins want to celebrate their 2009 Cup Victory. There are 24 players and 6 coaches attending the celebration.

$$y = 40(30) + 100$$
 $y = 1200 + 100$
 $y = 1300$
 $y = 1300$

Part 2: Recall properties of direct variations

A direct variation is a relationship between two variables in which one variable is a constant multiple of the other.

Model a direct variation in an equation: y = mx

Constant of variation is defined as: $m = rate \ of \ change = \frac{\Delta y}{\Delta x}$

Direct variations are linear relations that always pass through which point on the Cartesian coordinate grid? The origin (0,0)

Part 3: Compare direct variations to partial variations

The Tesla electrical company charges \$25 per hour to do electrical work plus a fee of \$50 for the estimate on the proposed work. AC-DC electrical charges \$50 per hour. Write equations to model each relationship. Let *x* represent the number of hours and let *y* represent the total cost.

Tesla Electric company:

AC-DC electrical:

Use the equations to create tables to organize the data for 0 to 4 hours.

Tesla electric company:

Hours (h)	Cost (\$)
0	50
1	75
2	100
3	125
4	150

AC-DC electrical:

Hours (h)	Cost (\$)		
0	0		
1	50		
2	100		
3	150		
4	200		

Which relation is a direct variation and how do you know?

Now graph the data for both companies on the same Cartesian coordinate grid.

Looking at the **graph or the table**, we should use <u>TESLA</u> for 3 hours of electrical work. Does this company always offer the best deal? Explain.

Tesla only offers a better deal if the work takes longer than 2 hours.

What is different about the two relations?

Tesla is a PARTIAL variation (initial cost $\neq 0$)

AC-DC is a DIRECT variation (initial cost = 0)

A **PARTIAL VARIATION** is a relationship between two variables in which the dependent variable is the sum of a constant number and a constant multiple of the independent variable.

In general, the graph of a **partial variation** has the following properties:

- it is a straight line which does not pass through the origin (0,0)
- the equation of a partial variation is always in the form y = mx + b
- 'b' is the initial value (y-intercept, fixed cost)
- 'm' is the constant of variation (rate of change, variable cost)

Part 4: Working with Partial Variation

a) Complete the following chart given that y varies partially with x (you may need to determine the constant of variation)

	x	У	
Δ?	0	6	N.
4	1	9	3 4
	2	12	
	3	15	W
	4	18	
	7	27	

b) What is the initial value of 'y' (y-intercept)?

c) What is the constant of variation (rate of change)?

$$M = \frac{44}{4x} = \frac{9-6}{1-0} = \frac{3}{1} = 3$$

Remember:
$$m = \frac{\Delta y}{\Delta x}$$

d) Write an equation relating y and x in the form y = mx + b

$$y = 3x + 6$$

e) Graph the relation

Part 5: Application of Partial Variation

A school is planning an awards banquet. The cost of renting the banquet facility and hiring serving staff is \$675. There is an additional cost of \$12 per person for the meal.

a) Identify the fixed cost (initial value; b) and the variable cost (constant of variation; m)

$$m = 12$$

 $b = 675$

b) Write an equation to represent this relationship in the form

$$y = mx + b$$

$$y = |2x + 675|$$

$$\cos T \qquad \text{# of Resple}$$

c) Use your equation to determine the total cost if 500 people attend the banquet.

$$y = 12x + 675$$

 $y = 12(500) + 675$
 $y = 6675$
It would cos \$6675.

Consolidate:

Direct variation		Partial variation			
Table	Graph	Equation	Table	Graph	Equation
Has (0,0) as the initial value	Passes through the origin	y = mx	Has an initial value other than zero	Crosses the dependent axis (y-axis) at an initial value other than 0	y = mx + b
Create an example:	Create an example:	Create an example:	Create an example:	Create an example:	Create an example:
1 2 4 3 6	Cample	y=200	2 9 0 1 1 3 2 5 3 7	Cample	y=2x+1