5.3 Binomial Probability Distributions

MDM4U Jensen

Part 1: Properties of a Binomial Experiment

•	in n trials is a discrete random variable - X . X is bility distribution is called a binomial distribution .
Properties of Binomial Experiments (Bernoulli T	<u>rials)</u>
1. There are n identical trials	
2. There are only two possible outcomes. Success o	r failure.
3. The probability of success is the same in every tr	ial (trials are independent of one another)
Part 2: Investigating	Binomial Experiments
Consider an experiment where you roll a single die	4 times.
a) What is the probability that your first two rolls a than a 6?	re 6's and your next two rolls will be something other

Note: This is a Bernoulli Trial because there are only two possible outcomes - success is a roll of 6, failure is a roll that is not 6. The probability of success is the same for every roll. The trials are independent of each other.

b) Find the probability of the event that the roll of 6 will appear exactly twice in any of the four available positions in the table.

Note: The number of ways 6 can be placed in two of the four entries is the same as counting the number of ways two objects can be selected from four available objects. C(4, 2)

c) Complete a	theoretical probability distr	ibution for the number of 6's showing in four rolls
Probability of	zero 6's	
D 1 1 11 1 1		
Probability of	one 6	
Probability of	two 6's	
Probability of	three 6's	
Duohahilitaraf	Saure Cla	
Probability of	iour o s	
Use a chart to	display the probability distr	ibution
# of 6's, x	P(x)	0.50 -
		0.40
0		
1		0.30 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
		ā. 0.20-
2		0.10
	· · · · · · · · · · · · · · · · · · ·	

0.00

numberofsixes

Part 2: Binomial Probability Formula

In a binomial experiment with n Bernoulli trials, each with a probability of success p , the probability of k successes in the n trials is given by:
Where <i>X</i> is the discrete random variable corresponding to the number of successes.
Example 1: Each child of a particular set of parents has probability 0.25 of having type 0 blood. Suppose the parents have 5 children.
a) Find the probability that exactly 3 of the children have type 0 blood
b) Should the parents be surprised if fewer than 2 of the children have type 0 blood?
Example 2: During the 2010 NHL season when Crosby led the NHL in Goals and Points, he had a 17% shooting percentage. Determine the probability that in a game where he takes four shots, he gets three goals.

Example 3: A basketball player has 3 shots in a free-throw competition. Historically, the player has a probability of 65% of scoring on a free throw. Assuming the probability is constant...

a) Determine the probability distribution for the number of free throws made

# of Free Throws Made, x	Probability, $P(x)$

b) Calculate the players expected number of free throws made in the competition.

Note: to calculate the expected value for a binomial probability distribution, you can use either of the following two formulas:

Example 4: A candy company makes candy-coated chocolates, 49% of which are red. The production line mixes the candies randomly and packages ten per box.

a) What is the probability that 3 of the candies in a given box are red?

b) What is the probability that a given box has at least 2 red candies?

Part 3: Using the Ti-84

binompdf(n, p, k) computes P(X = k)

binomcdf(n, p, k) computes $P(X \le k)$

Note: the binomcdf command only computes the probability of getting k or FEWER successes

Example 4: A candy company makes candy-coated chocolates, 49% of which are red. The production line mixes the candies randomly and packages ten per box.

a) What is the probability that 3 of the candies in a given box are red?

How to use the calculator:

- 2nd → VARS (DISTR) → binompdf(→ trials: 10 → p: 0.4 → x value: 3 → PASTE

What you need to write:

$$P(X = 3) = binompdf(n=10, p=0.4, k=3) = 0.21499$$

There is about a 21.50% chance that exactly three of the candies are red.

- **b)** What is the probability that a given box has at least 2 red candies?
- 2nd → VARS (DISTR) → binomcdf(→ trials: 10 → p: 0.4 → x value: 1 → PASTE

NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP
binomcdf trials:10 p:0.4 x value:1 Paste	binomcdf(10.0.4.1) .0463574016

What you need to write:

$$P(X \ge 2) = 1 - P(X \le 1)$$

= 1 - binomcdf(n=10, p=0.4, k=1) = 0.0463574016

= 0.9536

There is about a 95.36% chance that a given box has at least 2 red candies.