## Part 1: Properties of a Binomial Experiment

In a Binomial Experiment, the number of <u>successes</u> in *n* trials is a discrete random variable - *X*. *X* is termed a **binomial random variable** and its probability distribution is called a **binomial distribution**.

## **Properties of Binomial Experiments (Bernoulli Trials)**

- **1.** There are *n* identical trials
- **2.** There are only two possible outcomes. Success or failure.
- **3.** The probability of success is the same in every trial (trials are independent of one another)

## Part 2: Investigating Binomial Experiments

Consider an experiment where you roll a single die 4 times.

**a)** What is the probability that your first two rolls are 6's and your next two rolls will be something other than a 6?

 $P[(roll\ 1=6)\ and\ (roll\ 2=6)\ and\ (roll\ 3\neq6)\ and\ (roll\ 4\neq6)]$ 

$$=\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6}$$

$$=\frac{25}{1296}$$

**Note:** This is a Bernoulli Trial because there are only two possible outcomes - success is a roll of 6, failure is a roll that is not 6. The probability of success is the same for every roll. The trials are independent of each other.

**b)** Find the probability of the event that the roll of 6 will appear exactly twice in any of the four available positions in the table.

**Note:** The number of ways 6 can be placed in two of the four entries is the same as counting the number of ways two objects can be selected from four available objects. C(4, 2)

$$P(two\ 6's) = \frac{25}{1296} \times C(4,2) = \frac{25}{1296} \times 6 = \frac{150}{1296} = \frac{25}{216}$$

c) Complete a theoretical probability distribution for the number of 6's showing in four rolls

Probability of zero 6's

$$=\frac{5}{6}\times\frac{5}{6}\times\frac{5}{6}\times\frac{5}{6}=\left(\frac{5}{6}\right)^4=\frac{625}{1296}$$

Probability of one 6

$$= \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \binom{4}{1} = \left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^3 \binom{4}{1} = \frac{500}{1296} = \frac{125}{324}$$

Probability of two 6's

$$= \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} \times \binom{4}{2} = \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2 \binom{4}{2} = \frac{150}{1296} = \frac{25}{216}$$

Probability of three 6's

$$= \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times {4 \choose 3} = {1 \choose 6}^3 {5 \choose 6}^1 {4 \choose 3} = \frac{20}{1296} = \frac{5}{324}$$

Probability of four 6's

$$=\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \left(\frac{1}{6}\right)^4 = \frac{1}{1296}$$

Use a chart to display the probability distribution...

| # of 6's, x | P(x)                                                                                    |
|-------------|-----------------------------------------------------------------------------------------|
| 0           | $\binom{4}{0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^4 = \frac{625}{1296}$ |
| 1           | $\binom{4}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^3 = \frac{500}{1296}$ |
| 2           | $\binom{4}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2 = \frac{150}{1296}$ |
| 3           | $\binom{4}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^1 = \frac{20}{1296}$  |
| 4           | $\binom{4}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^0 = \frac{1}{1296}$   |



# Part 2: Binomial Probability Formula

In a binomial experiment with *n* Bernoulli trials, each with a probability of success *p*, the probability of *k* successes in the *n* trials is given by:

$$P(X = k) = \binom{n}{k} (p)^k (1 - p)^{n-k}$$

Where *X* is the discrete random variable corresponding to the number of successes.

**Example 1:** Each child of a particular set of parents has probability 0.25 of having type 0 blood. Suppose the parents have 5 children.

**a)** Find the probability that exactly 3 of the children have type 0 blood

$$n = 5$$

$$P(X = k) = \binom{n}{k} (p)^k (1-p)^{n-k}$$

$$p = 0.25$$

$$P(X = 3) = {5 \choose 3} (0.25)^3 (0.75)^2$$

$$k = 3$$

$$P(X = 3) = 0.08789$$

There is an 8.79% chance that 3 of their children will have type 0 blood.

**b)** Should the parents be surprised if fewer than 2 of the children have type 0 blood?

$$P(X < 2) = P(X = 0) + P(X = 1)$$

$$P(X < 2) = {5 \choose 0} (0.25)^{0} (0.75)^{5} + {5 \choose 1} (0.25)^{1} (0.75)^{4}$$

$$P(X < 2) = 0.6328125$$

There is a 63.28% chance that fewer than 2 of their children have type 0 blood so they should not be surprised.

**Example 2:** During the 2010 NHL season when Crosby led the NHL in Goals and Points, he had a 17% shooting percentage. Determine the probability that in a game where he takes four shots, he gets three goals.

$$P(X = 3) = {4 \choose 3} (0.17)^3 (0.83)^1 = 0.0163$$

$$n = 4$$

$$p = 0.17$$

$$k = 3$$

There is approximately a 1.63% chance of Crosby getting a hat-trick when he takes 4 shots.

**Example 3:** A basketball player has 3 shots in a free-throw competition. Historically, the player has a probability of 65% of scoring on a free throw. Assuming the probability is constant...

a) Determine the probability distribution for the number of free throws made

| # of Free Throws<br>Made, x | Probability, $P(x)$                       |
|-----------------------------|-------------------------------------------|
| 0                           | $\binom{3}{0}(0.65)^0(0.35)^3 = 0.042875$ |
| 1                           | $\binom{3}{1}(0.65)^1(0.35)^2 = 0.238875$ |
| 2                           | $\binom{3}{2}(0.65)^2(0.35)^1 = 0.443625$ |
| 3                           | $\binom{3}{3}(0.65)^3(0.35)^0 = 0.274625$ |

**b)** Calculate the players expected number of free throws made in the competition.

Note: to calculate the expected value for a binomial probability distribution, you can use either of the following two formulas:

i) 
$$E(X) = \sum x \cdot P(x)$$
 (this formula works for ALL types of probability distributions)  
=  $0(0.042875) + 1(0.238875) + 2(0.443625) + 3(0.274625)$ 

= 1.95

**ii)** 
$$E(X) = np$$
 (this formula only works for binomial probability distributions)

= 3(0.65)

= 1.95

**Example 4:** A candy company makes candy-coated chocolates, 40% of which are red. The production line mixes the candies randomly and packages ten per box.

a) What is the probability that 3 of the candies in a given box are red?

$$P(X=3) = {10 \choose 3} (0.4)^3 (0.6)^7 = 0.21499$$

There is about a 21.50% chance that exactly three of the candies are red.

b) What is the probability that a given box has at least 2 red candies?

$$P(X \ge 2) = 1 - [P(0) + P(1)]$$

$$P(X \ge 2) = 1 - \left[ \binom{10}{0} (0.4)^0 (0.6)^{10} + \binom{10}{1} (0.4)^1 (0.6)^9 \right]$$

$$P(X \ge 2) = 1 - 0.0463574016$$

$$P(X \ge 2) = 0.9536$$

There is about a 95.36% chance that a given box has at least 2 red candies.

## Part 3: Using the Ti-84

binompdf(n, p, k) computes P(X = k)

binomcdf(n, p, k) computes  $P(X \le k)$ 

Note: the binomcdf command only computes the probability of getting k or FEWER successes

**Example 4:** A candy company makes candy-coated chocolates, 40% of which are red. The production line mixes the candies randomly and packages ten per box.

a) What is the probability that 3 of the candies in a given box are red?

How to use the calculator:

- 2<sup>nd</sup> → VARS (DISTR) → binompdf( → trials:  $10 \rightarrow p$ :  $0.4 \rightarrow x$  value:  $3 \rightarrow PASTE$ 



What you need to write:

$$P(X = 3) = binompdf(n=10, p=0.4, k=3) = 0.21499$$

There is about a 21.50% chance that exactly three of the candies are red.

- **b)** What is the probability that a given box has at least 2 red candies?
- 2<sup>nd</sup> → VARS (DISTR) → binomcdf( → trials: 10 → p: 0.4 → x value: 1 → PASTE

| NORMAL FLOAT AUTO REAL RADIAN MP                     | NORMAL FLOAT AUTO REAL RADIAN MP  |
|------------------------------------------------------|-----------------------------------|
| binomcdf<br>trials:10<br>p:0.4<br>x value:1<br>Paste | binomcdf(10.0.4.1)<br>.0463574016 |

What you need to write:

$$P(X \ge 2) = 1 - P(X \le 1)$$

= 1 - binomcdf(n=10, p=0.4, k=1) = 0.0463574016

= 0.9536

There is about a 95.36% chance that a given box has at least 2 red candies.