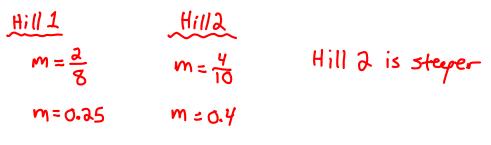


Investigation


Slope: A measurement of the steepness of a line.

1. Rank the hills in order of their steepness, from least to greatest.

i.<u>B</u>ii.<u>C</u>iii.<u>A</u>

2. A hill rises 2 meters over a horizontal run of 8 meters. A second hill rises 4 meters over a horizontal run of 10 meters. Which is the steeper hill?

3. Describe your method for determining steepness:

Calculated the rate of change. A larger rate of change = steeper slope.

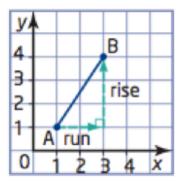
Part 1: How do we find the slope of a line?

The steepness of a line s	segment is meas	ured by i	ts <u>SLOPE</u>	The	
slope is the ratio of the _	RISE	_ to the _	RUN	and	
is often represented by the letter $\underline{\mathcal{M}}$.					

You should maybe be starting to make a connection; what else did we use the letter m to represent?

<u>RSE</u>: the vertical distance between two points (Δy)

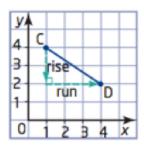
<u>**RUN**</u>: the horizontal distance between two points (Δx)


$$Slope = m = rac{rise}{run}$$
 or $rac{\Delta y}{\Delta x}$

When determining the rise and run of a line from its graph you must know that:

Counting units in the upward direction gives a $Pos_{1}TVC$ rise Counting units in the downward direction gives a NECATVC rise

Counting units to the right gives a	POSITIVE	run
Counting units to the left gives a _	NEGATIVE	run

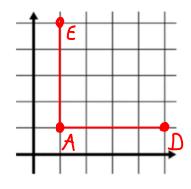

Example 1: Count the units on the grid to determine the rise and run.

What's the slope of this line?

$$M = \frac{rise}{run} = \frac{3}{2}$$

Example 2: Count the units on the grid to determine the rise and run

What's the slope of this line?


Looking at example 1:

Is the slope positive or negative? Positive? What direction does the line go? Up to the right Looking at example 2: Is the slope positive or negative? <u>NEGATIVE</u> What direction does the line go? Down to the right

Conclusion about positive and negative slopes:	
A line that goes up to the right slope.	_ has a positive
A line that goes down to the right slope.	_ has a negative

Part 2: Finding the slope of vertical and horizontal lines

Step 1: Plot the points A(1,1) and D(5,1) on the graph provided. Connect the points to form the line segment AD.

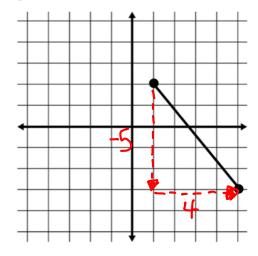
Step 2: Determine the rise and the run of line AD

rise = \bigcirc run = 4 $m = \frac{9}{4} = \bigcirc$ The slope of any horizontal line is \bigcirc **Step 3:** Plot the point E(1,5) on the same grid. Connect it to point A to form the line segment AE.

Step 4: Determine the rise and the run of line AE

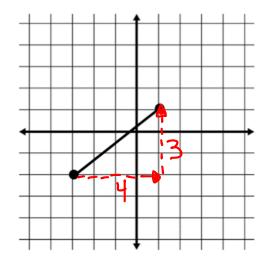
rise = 4 run = 0
$$m = \frac{4}{5} = 4$$
 run = 0 The slope of any vertical line is Undefined

Part 3: Practice Finding Slopes

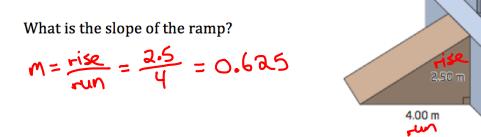

Calculate the slope of each line segments

Example 3:

rise is: -5


run is: 4

$$m = \frac{rise}{run} = \frac{-5}{4}$$



Example 4:

rise is: 3run is: 4 $m = \frac{3}{4}$

Example 5: The ramp at a loading dock rises 2.5 meters over a run of 4 meters.

