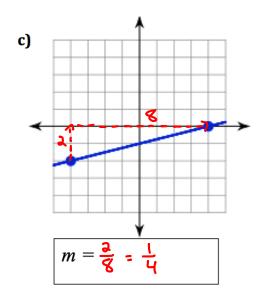
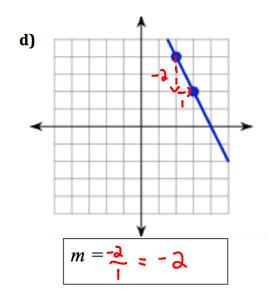
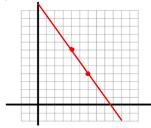

5.3b Slope


Part 1: Do It Now


Find the slope of each of the following lines by looking at the graph and determining the rise and the run.

Remember: $slope = \frac{rise}{run}$



Part 2: Draw a graph to find another point on a line

Example 1: A line segment has one endpoint, A(4,7), and slope of $-\frac{3}{2}$. Find the coordinates of another possible endpoint, B.

Step 1: Plot the point A(4,7). Step 2: Use the slope $-\frac{3}{2}$ to find another endpoint.

Note: $-\frac{3}{2} = \frac{-3}{2}$, therefore the line has a rise of $\underline{}$ and run of $\underline{}$

To plot another point, start at point A and use the slope of the line to plot another point.

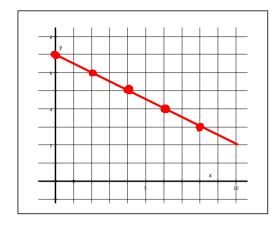
The rise of -3 tells us we should go _______3 units.

The run of 2 tells us we should go RIGHT 2 units.

Another possible endpoint is: (6, 4)

Note: There are an infinite number of solutions!!! What would have happen if you used a slope of $\frac{3}{-2}$? Why does this happen?

Rise of 3, run of -2. Using this would give you another point on the same line but to the opposite side.


Example 2:

If a line has slope of $-\frac{1}{2}$, and the line passes through the point (4,5) determine the coordinates of two points to the left, and two points to the right on the same line.

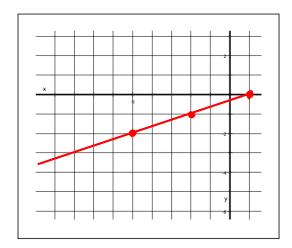
Note: $-\frac{1}{2} = \frac{-1}{2} = \frac{1}{-2}$

Graphical solution:

('move' to other points according to the slope)

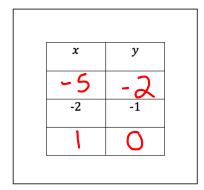
Table solution:

('move' to other points according to the slope)


X	y	
0	7	
જ	J	
4	5	
6	4	
1 00	M	

Example 3:

If a line has slope of $m = \frac{1}{3}$, and the line passes through the point (-2,-1) determine the coordinates of a point to the left and right on the same line.


Graphical solution:

('move' to other points according to the slope)

Table solution:

('move' to other points according to the slope)

Part 3: Use the coordinates to find another point on the line

Example 4: A line segment has one endpoint A(-2,7) and a slop of $-\frac{4}{3}$. Find the coordinates of another point on the line.

$$-\frac{4}{3} = \frac{-4}{3}$$
 Therefore the line has a rise of $\frac{4}{3}$ and a run of $\frac{3}{3}$.

Add the rise to the y-coordinate and the run to the x-coordinate to find another possible point.

Other endpoint =
$$(-2 + 3, 7 + (-4)) = (1, 3)$$

Note: you could also subtract the rise and run to find a point to the other side on the line.

Example 5: A line segment has one endpoint A(3,-5) and a slope of $-\frac{7}{2}$. Find the coordinates of another point on the line. $-\frac{7}{3} = \frac{-7}{2}$

$$\alpha \propto R R w 4x$$

Other point =
$$(3+2, -5+(-7)) = (5, -12)$$