5.5 First Differences

DO IT NOW

If a tennis ball falls out of the third story window of a building will its motion be linear? The height of the ball over time is recorded in the following table.

Graph the relation and determine if it represents linear motion.

Time (seconds)	Height (meters)
0	30
1	29
2	26
3	21
4	14
5	5
6	0

Time (seconds)
Rate of change is not costant.

Part 1:Recall

We know from graphing lines that if the slope (rise and the run) is constant then the relation will form a straight line.

$$
\text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{\Delta x}{\Delta y}
$$

Therefore, we need to determine if the changes in x and y are constant in a table to determine if a relation is linear.

Part 2: What are First differences

First differences are the differences between consecutive y-values in tables of values with evenly spaced x-values.

If the first differences of a relation are constant, the relation is LNEAR

If the first differences of a relation are not constant, the relation is NON-LINEAR
Notice that the $x-$
values change by a
constant amount. This
is a requirement to
work with first
differences!

\boldsymbol{x}	\boldsymbol{y}	 First Differences are constant! linear relation	
0	0	$3-0=3$	
1	3	$6-3=3$	
2	6	$9-6=3$	
3	9	$12-9=3$	
4	12		

Part 3: Calculating First Differences

Complete a table of values for each equation given. Then determine if the first differences are constant and state whether the relation is linear or non linear.

Example 1:
$y=-2 x+7$

Conclusion:
the first differences are Constant
therefore the relationship is Linear

Example 2:

$y=x^{2}$

Conclusion:
the first differences are Not Constant therefore the relationship is Non-Linear

Example 3:

$$
y=2^{x}
$$

$\left.\begin{array}{|c|c|}\hline x & y \\ \hline & \\ \hline 0 & 1 \\ \text { First Differences } \\ \hline 1 & 2\end{array}\right)$

Conclusion:

the first differences are Not Constant therefore the relationship is Non Linear

Part 4: Check Your Understanding

Use first differences to determine which of these relations are linear and which are non linear.

Example 4:

\boldsymbol{x}	\boldsymbol{y}	First Differences
0	7	
1	3	$-1-3=-4$
2	-1	$-5-(-1)=-4$
3	-5	$-9-(-5)=-4$
4	-9	

Type of relation: Linear

Example 5:

\boldsymbol{x}	\boldsymbol{y}	First Differences
2	-5	
3	10	$25-10=15$
4	25	$40-25=15$
5	40	$55-40=15$
6	55	

Type of relation:Linear

Example 6:

\boldsymbol{x}	\boldsymbol{y}	First Differences				
-2	-10					
-1	-2	$0-(-2)=2$				
0	0	$2-0=2$				
1	2	$10-2=8$				
2	10					

Type of relation:Non-linear

