5.6-Connecting Slope, Rate of Change, and First Differences

Part 1: Do It Now

a) Calculate the first differences

\boldsymbol{x}	\boldsymbol{y}			
0	-3	First Differences		Type of relation:
:---:				
3				

b) Using the table of values, what is the constant of variation (slope)?
Point 1: ($\left.\begin{array}{l}x_{0},-3 \\ 0\end{array}\right) \quad$ Point 2: $\binom{x_{2}}{3}$
Remember: $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-3)}{3-0}=\frac{4}{3}$
c) What is the initial value (y-intercept)?
when $x=0, y=-3$. of $b=-3$
d) Is this a direct variation or partial variation?

Partial because $b \neq 0$
e) Write an equation for the relation in the form $y=m x+b$ using the constant of variation (m) and the initial value (b)

$$
y=\frac{4}{3} x-3
$$

f) Graph the relation

g) Find the slope of the line from the graph. How does this relate to the constant of variation?

This is the same

$$
\text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{4}{3} \quad \begin{aligned}
& \text { as the constant of } \\
& \text { variation. }
\end{aligned}
$$

h) What is the y-intercept? How does this relate to the initial value?

$$
y \text {-intercept }=b=-3 \quad \begin{aligned}
& \text { This is the some } \\
& \text { as the initial value. }
\end{aligned}
$$

i) Write the equation of the line in the form $y=m x+b$ using the slope and y-intercept

$$
y=\frac{4}{3} x-3
$$

Part 2: The Rule of Four

A relation can be represented in a variety of ways so that it can be looked at from different points of view. A mathematical relation can be described in four ways:

1. Using words
2. Using a graph
3. Using a table of values
4. Using an equation

Part 3: Write an equation when the relation is represented in words
Remember that the equation of a line is $y=m x+b$
Considering that a line is really just a set of ordered pairs, (x, y), it makes sense that the equation of a line needs to contain the variables x and y. These variables will define the coordinates that make up the line.

This means that the only 2 values that need to be determined in order to write the equation of a linear relation are m and b.

When a linear relation is represented in words m is the rate of change and b is the initial value.

$$
\begin{array}{ll}
\text { Linear relation represented in words: }: & m=\text { rate of change (slope) } \\
& b=\text { initial value (y-intercept) }
\end{array}
$$

Example 1: Write an equation for the following relationship by first identifying the value of m and b.

The Copy Centre charges $\$ 75$ to design a poster plus 25 cents for each copy.

$$
m=0.25 \quad b=75
$$

And the equation of this linear relation is:

$$
\text { cost } \rightarrow y=0.25 x+75
$$

If The Copy Centre changed their cost per flyer to 35 cents for each copy the equation would become:

$$
y=0.35 x+75
$$

If The Copy Centre changed their design cost to $\$ 125$ the equation will become:

$$
y=0.25 x+125
$$

Example 2: y varies directly with x. When $x=2, y=8$.
a) What is the initial value? (y-intercept)

All direct variations have an initial value of 0 .

$$
\therefore b=0
$$

b) What is the slope of the line? Point $1:\left(\begin{array}{ll}x_{1} & y_{1} \\ 0\end{array}\right) \quad$ Point: $:\binom{x_{2}}{(2,8)}$

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-0}{2-0}=\frac{8}{2}=4
$$

c) Write an Equation for this relationship

$$
y=4 x
$$

Example 3: y varies partially with x. When $x=0, y=3$, and when $x=2, y=8$.
a) What is the initial value? $(y-$ int $)$ when $x=0, y=3 . \therefore b=3$
b) What is the slope of the line? Point : $:\left(\begin{array}{l}x_{1}, \frac{4}{3} \\ (0,3)\end{array}\right.$ Point $2:\left(\frac{x_{2}}{(2, y)}\right.$

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-3}{2-0}=\frac{5}{2}
$$

c) Write an Equation for this relationship

$$
y=\frac{5}{2} x+3
$$

Part 4: Write an equation when the relation is represented in a table of values

Remember:

$$
\text { slope }=\text { rate of change }=m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
b=\text { initial value }=y-\text { intercept }=\text { value of } y \text { when } x \text { is } 0
$$

Example 4: Determine the equation of the following linear relations using the tables provided:

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{9-6}{1-0} \\
& =\frac{3}{1} \\
& =3 \\
b & =6
\end{aligned}
$$

Equation:

$$
y=3 x+6
$$

b)

\boldsymbol{x}	\boldsymbol{y}
$x_{1}-2$	$y_{1} 3$
$x_{2} 0$	$y_{2} 5$
2	7
4	9
6	11

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-3}{0-(-2)} \\
& =\frac{2}{2} \\
& =1 \\
b & =5
\end{aligned}
$$

Equation:

$$
y=x+5
$$

What should we do if the initial value isn't in the table?
c)

x	y
0	-17
1	-14
2	-11
$x_{1} 3$	$y_{1}-8$
x_{2}	4
$y_{2}-5$	

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-5-(-8)}{4-3} \\
& =\frac{3}{1} \\
& =3 \\
b & =-17
\end{aligned}
$$

Equation: $y=3 x-17$
d)

\boldsymbol{x}	\mathbf{y}
-8	-5
$x_{1}-6$	$y^{\prime}-10$
$x_{2}-4$	$y_{2}-15$
-2	-20
0	-25

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{y_{2}-x_{1}} \\
& =\frac{-15-(-10)}{-4-(-6)} \\
& =\frac{-5}{2}
\end{aligned}
$$

$$
b=-25
$$

Equation:

$$
y=-\frac{5}{2} x-25
$$

Part 5: Write an equation when the relation is represented as a graph

Example 5: The graph shows the relationship between the volume of gasoline remaining in a car's fuel tank and the distance driven.

$$
\text { Remember: } m=\text { slope }=\frac{\text { rise }}{r u n}
$$

$b=$ initial value $=y-$ intercept

Slope: $m=\frac{\text { rise }}{r u n}$

$$
\begin{aligned}
& =\frac{-65}{500} \\
& =\frac{-13}{100}
\end{aligned}
$$

y-intercept: $b_{b}=65$
Equation: $y=-\frac{13}{100} x+65$

