6.1a Equation of a Line in Slope yIntercept Form

Example 1: Complete the following chart

Example 2: Identify the slope and y-intercept of each line
a)

Slope: to find the slope use two points on the line and the formula $m=\frac{r i s e}{r u n} O R m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Point 1: $\begin{aligned} & x_{1} y_{1} \\ & 3,-3 \\ & x_{2}, y_{2} \\ & \text { point 2: } \\ & (6,-1)\end{aligned} \quad m=\frac{-1-(-3)}{6-3}$

$$
=\frac{2}{3}
$$

y-intercept: you can find the y-intercept by looking at the graph and checking where the line crosses the y-axis. (When $x=0, y=$?)

Slope: $m=\frac{2}{3} \quad y$-intercept: $b=-5$
Equation of the line: $y=\frac{2}{3} x-5$
b)

Slope: to find the slope use two points on the line and the formula $m=\frac{r i s e}{r u n}$ OR $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& \text { Point 1: }\left(\begin{array}{l}
x, y_{1} \\
\text { Point 2: }\left(\begin{array}{cc}
x_{2} & y_{2} \\
3,-3)
\end{array}\right. \\
\text { P }
\end{array}\right.
\end{aligned}
$$

$$
m=\frac{-3-1}{3-1}
$$

$$
=\frac{-4}{2}
$$

$$
=-2
$$

y-intercept: you can find the y-intercept by looking at the graph and checking where the line crosses the y-axis. (When $x=0, y=$?)

Slope: $m=-2 \quad y$-intercept: $b=3$

Equation of the line: $\quad y=-2 x+3$
c)

Slope: to find the slope use two points on the line and the formula $m=\frac{r i s e}{r u n}$ OR $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Point 1

Point 2

$$
m=\frac{4-4}{2-1}
$$

$=\frac{0}{1}$
$=0$
y-intercept: you can find the y-intercept by looking at the graph and checking where the line crosses the y-axis. (When $x=0, y=$?)

Note: all horizontal lines have a slope of \qquad and an equation of the form $y=b$ \qquad where b is the y-intercept
d)

Slope: to find the slope use two points on the line and the formula $m=\frac{\text { rise }}{\text { run }}$ OR $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Point 1: $\left.\begin{array}{ll}x_{1} & y_{1} \\ 2 & 2\end{array}\right)$
$m=\frac{3-2}{2-2}$

Point 2: $\begin{aligned} & x_{2}, y_{2} \\ & 2,3)^{2}\end{aligned}$
$=\frac{1}{0}$
= undefined
y-intercept: you can find the y-intercept by looking at the graph and checking where the line crosses the y-axis.
slope: undefined y-intercept: none

Equation of the line: $\chi=2$

Note: All vertical lines have an undefined__slope and an equation of the form \qquad , where a is the x-intercept

Example 3: Interpreting a Linear Relation

Identify the slope and the vertical intercept of the linear relation and explain what they mean.
Slope: $m=\frac{\text { rise }}{\text { run }} \quad y$-intercept: $\quad b=5$

$$
\begin{aligned}
& m=-\frac{2}{4} \\
& m=\frac{-1}{2} \text { OR }-0.5
\end{aligned}
$$

The slope represents Tracy's speed $\rightarrow-$. The negative value means that her distance from the sensor is \qquad . Tracy's speed toward the sensor was 0.5 m / s \qquad

y-intercept:

The y-intercept of 5 means that Tracy started walking at a distance of __5_ meters_ from the sensor.

Equation of the relation:

$$
y=-\frac{1}{2} x+5
$$

