6.2 - Standard Form

The equation of a line can be written in two different forms:

1. Slope y-intercept form: y = mx + b

where m is the slope, and b is the y-intercept

2. Standard form: Ax + By + c = 0

where A, B, and c are <u>integers</u> and A and B are both not <u>zero</u>.

You can change an equation from one form to the other by rearranging the equation.

Example 1:

Write the equation of the line 2x - 3y - 6 = 0 in slope y-intercept form by isolating the y.

$$2x-3y-6=0$$

$$-3y = -2x+6$$

$$-3y = -3x+6$$

$$-3x + \frac{6}{-3}$$

$$y = \frac{2}{3}x - 2$$

Example 2: Write each equation in slope y-intercept form and state the slope and the y-intercept.

a)
$$3x + 5y - 15 = 0$$

$$8y = -3x + 15$$

$$y = -\frac{3}{5}x + \frac{15}{5}$$

$$y = -\frac{3}{5}x + 3$$

Slope =
$$m = -\frac{3}{5}$$

y-intercept = $b = 3$

b)
$$7x - 3y + 21 = 0$$

$$y = \frac{-7}{-3}x - \frac{21}{-3}$$

$$y = \frac{7}{3}x + 7$$

Slope =
$$m = \frac{7}{3}$$

y-intercept = $b = 7$

Example 3: Barney's Banquet Facility charges according to the equation 2x - y + 200 = 0 where x is the number of people attending and y is the total cost.

a) Write the equation in slope y-intercept form.

b) What is the fixed cost?

fixed cost =
$$b = 200$$

c) What is the rate of change of the cost?

rate of change
$$= m = 2$$

d) What is the total cost if 125 people attend a banquet at Barney's?

- \$ 450
- e) If the total cost is \$920, how many people attend the banquet?

$$\chi = 360$$

360 people

1. There are two forms in which the equation of a line can be written. What are they?

2. It is possible to convert an equation from one form to the other by Reaccanaing the equation.

3. Write the slope-intercept form of the equation of each line:

a)
$$3x - 2y = -16$$

$$-ay = -3x - 16$$

 $y = -\frac{3}{2}x - \frac{16}{2}$

c)
$$9x - 7y = -7$$

$$y = \frac{3}{2}x + 8$$
c) $9x - 7y = -7$

$$-7y = -9x - 7$$

$$y = -\frac{9}{7}x - \frac{7}{-7}$$

$$y = \frac{9}{7}x + 1$$

e)
$$6x + 5y = -15$$

$$5y = -6x - 15$$

 $y = -\frac{6}{5}x - \frac{15}{5}$

$$y = -\frac{6}{5}x - 3$$

g)
$$11x - 4y = 32$$

$$-4y = -11x + 32$$

 $y = -11/x + 32/-4$

b)
$$13x - 11y = -12$$

$$y = \frac{13}{11}x + \frac{12}{11}$$

d)
$$x - 3y = 6$$

$$-3y = -1x + 6$$

 $y = \frac{-1}{-3}x + \frac{6}{-3}$

$$y = \frac{1}{3}x - 2$$

$$\mathbf{f)}\ 4x - y = 1$$

h)
$$11x - 8y = -48$$

$$y = -\frac{11}{8}x - \frac{48}{8}$$