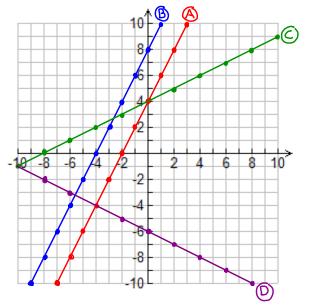

6.4 Parallel and Perpendicular Lines

Parallel Lines – lines in the same plane that never meet.

Perpendicular Lines – Two lines that cross at 90 degrees.

DO IT NOW!


Instructions: Draw and label each of the following lines on the grid below:

(A)
$$y = 2x + 4$$

B
$$y = 2x + 8$$

©
$$y = \frac{1}{2}x + 4$$

D
$$y = -\frac{1}{2}x - 6$$

1) Which lines are parallel?

2) What do you notice about the slopes of lines that are parallel?

3) Which lines are perpendicular?

4) What do you notice about the slopes of lines that are perpendicular?

5) What is the product of the perpendicular slopes?

Perpendicular slopes always have a product of -1.

6) Does the y-intercept matter when deciding if two lines are parallel or perpendicular?

NO, only the slopes matter.

Consolidation:

Parallel lines will have <u>EQUIVALENT</u> slopes.

Perpendicular lines will have slopes that are <u>NEGATIVE</u>

<u>RECIPROCALS</u>. Their product is -1.

Example 1:

a) The equation of a line is y = 3x - 4. What is the slope of a line that is parallel to this line?

b) The equation of a line is y = -x + 15. What is the slope of a line that is parallel to this line?

c) The equation of a line is $y = \underline{2}x + 1$. What is the slope of a line that is perpendicular to this line?

d) The equation of a line is $y = \frac{3}{5}x + 2$. What is the slope of a line that is perpendicular to this line?

$$m = \frac{3}{5}$$
; $Lm = -\frac{5}{3}$

e) The equation of a line is $y = -\frac{1}{7}x - \frac{3}{7}$. What is the slope of a line that is perpendicular to this line?

$$m = -\frac{1}{7}$$
; $b = \frac{7}{1} = 7$

Example 2: The slopes of two lines are given. Determine whether the lines are parallel, perpendicular or neither.

a)
$$m = 3$$
, $m = -\frac{1}{3}$

b)
$$m = 5, m = -5$$

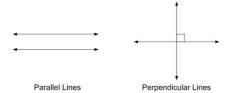
Neither

« Perpendicular

c)
$$m = 6$$
, $m = \frac{1}{6}$

d)
$$m = -2, m = -2$$

Example 3:


a) Determine the slope of a line that is parallel to the line 2x-3y-6=0.

$$M = \frac{3}{3}$$

b) Determine the slope of a line that is perpendicular to the line 2x-3y-6=0.

$$M = \frac{3}{3}$$
; $Lm = -\frac{3}{2}$

Consolidate:

- a) Explain how you can determine if the two lines 3x-4y-12=0 and 4x-3y-24=0 are parallel, perpendicular or neither.
 - · Rearrange into slope intercept form (y=mx+b)
- · Parallel if slopes are the same
- · Perpendicular if slopes are negative reciprocals
- **b)** Determine if the two lines 3x-4y-12=0 and 4x-3y-24=0 are parallel, perpendicular or neither.

are paramet, perpendicular of neither.

$$3x - 4y - 12 = 0$$
 $4x - 3y - 24 = 0$
 $-4y = -3x + 12$ $-3y = -4x + 24$
 $y = \frac{3}{4}x - 3$ $y = \frac{4}{3}x - 8$
 $m = \frac{3}{4}$ $m = \frac{4}{3}$

The lines are neither parallel or perpendicular