## 6.5 - Equation of a Line Given Slope and a Point

## DO IT NOW!

Instructions: Determine the equation of the line, in slope $y$-intercept form, that has a slope of 3 and goes through the point ( $2,-5$ )

Note: You can write the equation of a line once you know the slope and $y$ intercept.


## Step 1: State what you know about the line

$$
\begin{aligned}
& \text { Slope }=m=3 \\
& \text { Point on line: }(2,-5)
\end{aligned}
$$

## Step 2: Determine the $y$-intercept of the line

To do this we can use the equation $y=m x+b$, substitute in values for $m, x$ and $y$ and then solve for the $b$ value. Use the point on the line that is given for the $x$ and $y$ values.

$$
\begin{aligned}
& y=m x+b \\
& -5=3(2)+b \\
& -5=6+b \\
& -5-6=b \\
& b=-11
\end{aligned}
$$

STEP 3: Write the equation of the line in slope Note: When writing the $\mathbf{y}$-intercept form.

$$
y=3 x-11
$$

Example 1: Find the equation of the line with a slope of $\frac{1}{2}$ that passes through $(1,5)$.

Step 1: State what you know about the line
slope $=m=\frac{1}{2}$
Point: $\left(1, \frac{y}{5}\right)$
Step 2: Determine the $y$-intercept of the line

$$
\begin{aligned}
& y=m x+b \\
& 5=\frac{1}{2}(1)+b \\
& 5=\frac{1}{2}+b \\
& \frac{5}{1}-\frac{1}{2}=b \\
& \frac{10}{2}-\frac{1}{2}=b \\
& b=\frac{9}{2}
\end{aligned}
$$

STEP 3: Write the equation of the line in slope $y$-intercept form.

$$
y=\frac{1}{2} x+\frac{9}{2}
$$

Example 2: Find the equation of the line with a slope of 3 and that passes through $(0,2)$. Then graph the line.

## Step 1: State what you know about the line

slope: $m=3$
Point: $\left(\begin{array}{l}x \\ 0,2 \\ y\end{array}\right)$
Step 2: Determine the $y$-intercept of the line

$$
\begin{aligned}
& y=m x+b \\
& 2=3(0)+b \\
& 2=b
\end{aligned}
$$

This point is the $y$-intercept.
If you notice this, you don't
have to calculate it
STEP 3: Write the equation of the line in slope $y$-intercept form.

$$
y=3 x+2
$$

## Step 4: Graph the line using the slope and $y$-intercept



Example 3: Determine the equation of a line that is parallel to the line $y=-2 x-7$ and passes through the point $(1,-3)$.

Step 1: State what you know about the line
Remember: lines that are parallel have the same slope. They do not have the same $y$ intercept. You will still have to solve for that.
slope: $m=-2$
Point: $(1,-3)$

Step 2: Determine the $y$-intercept of the line

$$
\begin{aligned}
& y=m x+b \\
& -3=-2(1)+b \\
& -3=-2+b \\
& -3+2=b \\
& -1=b
\end{aligned}
$$

STEP 3: Write the equation of the line in slope $y$-intercept form.

$$
y=-2 x-1
$$

Example 4: Determine the equation of a line that is perpendicular to the line $2 x-y+4=0$ and passes through the point $(-2,5)$.

Hint: to determine the slope you will need to put the equation into $y=m x+b$ form so that you can see the slope and then take the negative reciprocal.

$$
\begin{gathered}
2 x-y+4=0 \\
2 x+4=y \\
y=2 x+4
\end{gathered}
$$

## STEP 1: state what you know about the line

Slope of given line:

$$
m=2
$$

Slope of perpendicular line (find negative reciprocal):

$$
\ln _{m}=-\frac{1}{2}
$$

Point on the perpendicular line: $(-2,5)$

Step 2: Determine the $y$-intercept of the line (make sure to use the slope of the perpendicular line)

$$
\begin{aligned}
& y=m x+b \\
& 5=\frac{-1}{2}(-2)+b \\
& 5=\frac{2}{2}+b \\
& 5=1+b \\
& 5-1=b \\
& 4=b
\end{aligned}
$$

STEP 3: Write the equation of the line in slope $y$-intercept form (make sure to use the slope of the perpendicular line).

$$
y=-\frac{1}{2} x+4
$$

## Consolidation:

To write the equation of a line you need to know the slope (m) and $y$-intercept (b).

You can use the slope of a line and a point on the line to calculate the $y$-intercept .
To find the slope of a perpendicular line, find the negative reciprocal

