7.3 Angle Relationships in Polygons

Types of Polygons

Convex Polygon: All interior angles measure less than 180 degrees.

- no part of any line segment joining two points on
 the polygon goes outside the polygon.

Concave Polygon: Can have interior angles greater than 180 degrees.

- parts of some line segments joining two points
 on the polygon go outside the polygon.

Regular Polygon: All sides are equal and all interior angles are equal.

Angle Properties in Polygons

The sum of the exterior angles of a convex polygon is 360 degrees.

For a polygon with n sides, the sum of the interior angles, in degrees, is $180(n-2)$

For a regular polygon with n sides, the measure of each interior angle is equal to: $\frac{180(n-2)}{n}$

For a regular polygon with n sides, the measure of each exterior angle is equal to: $\frac{360}{n}$

Example 1
Calculate the sum of the interior angles of an octagon

$$
8 \text { sides }
$$

$$
\begin{aligned}
\text { sum of interior angles } & =180(n-2) \\
& =180(8-2) \\
& =180(6) \\
& =1080^{\circ}
\end{aligned}
$$

Example 2
Calculate the measure of each of the interior angles of a regular octagon.

$$
\begin{aligned}
\text { interior angle } & =\frac{180(n-2)}{n} \\
& =\frac{180(8-2)}{8} \\
& =\frac{1080}{8} \\
& =135^{\circ}
\end{aligned}
$$

Example 3
Calculate the measure of each of the exterior angles of a regular octagon.

$$
\begin{aligned}
\text { exterior angle } & =\frac{360}{n} \\
& =\frac{360}{8} \\
& =45^{\circ}
\end{aligned}
$$

Example 4
How many sides does a polygon have if each of its interior angles measure 140 degrees?

$$
\begin{aligned}
& \text { interior angle }=\frac{180(n-2)}{n} \\
& 140=\frac{180(n-2)}{n} \\
& 140 n=180(n-2) \\
& 140 n=180 n-360 \\
& 360=180 n-140 n \\
& 360=\frac{40 n}{40} \\
& 9=n
\end{aligned}
$$

The regular polygon has 9 sides.

Example 5
The measure of one of the exterior angles of a regular polygon is 30 degrees. How many sides does it have?

$$
\text { exterior angle }=\frac{360}{n}
$$

$$
\begin{aligned}
& 30=\frac{360}{n} \\
& 30 n=360 \\
& n=\frac{360}{30} \\
& n=12
\end{aligned}
$$

Example 6

Five angles of hexagon have measures $100^{\circ}, 110^{\circ}, 120^{\circ}, 130^{\circ}$, and 140°. What is the measure of the sixth angle?

$$
\begin{aligned}
\text { sum of interior angles } & =180(n-2) \\
& =180(6-2) \\
& =720^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
6^{\text {th }} \text { angle } & =720-100-110-120-130-140 \\
& =120^{\circ}
\end{aligned}
$$

Example 7 Solve for x

$$
\begin{gathered}
x+110+100+2 x+138=540 \\
3 x=540-110-100-138 \\
3 x=192 \\
x=\frac{192}{3} \\
x=64^{\circ}
\end{gathered}
$$

Complete the following chart and then complete the worksheet

Polygon	Number of Sides	Sum of Interior Angles	Sum of Exterior Angles
Triangle	3	$180(3-2)=180^{\circ}$	360°
Quadrilateral	4	$180(4-2)=360^{\circ}$	360°
Pentagon	5	$180(5-2)=540^{\circ}$	360°
Hexagon	6	$180(6-2)=720^{\circ}$	360°
Heptagon	7	$180(7-2)=900^{\circ}$	360°
Octagon	8	$180(8-2)=1080^{\circ}$	360°
Enneagon	9	$180(9-2)=1260^{\circ}$	360°
Decagon	10	$180(10-2)=1440^{\circ}$	360°

