## Unit 6

## Rates of Change

## Lesson Package

MHF4U

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

## Unit 6 Outline

Unit Goal: By the end of this unit, you will be able to demonstrate an understanding of average and instantaneous rates of change.

| Section | Subject | Learning Goals | Curriculum Expectations |
| :---: | :---: | :---: | :---: |
| L1 | Average Rates of Change | - Calculate and interpret average rates of change of functions | $\begin{gathered} \hline \text { D1.1, } 1.2,1.3, \\ 1.4 \end{gathered}$ |
| L2 | Instantaneous Rates of Change | - understand what an instantaneous rate of change is and be able to use average rates of change to estimate instantaneous rates | $\begin{gathered} \text { D1.5, 1.6, 1.7 } \\ 1.8,1.9 \end{gathered}$ |
| L3 | Newton Quotient | - Calculate the equation of the derivative | D1.8 |
| L4 | Limits | - Be able to calculate limits from a graph and from an equation | D1.8 |


| Assessments | F/A/O | Ministry Code | P/O/C | KTAC |
| :--- | :---: | :---: | :---: | :---: |
| Note Completion | A |  | P |  |
| Practice Worksheet Completion | $\mathrm{F} / \mathrm{A}$ |  | P |  |
| Quiz - Solving Rational <br> Equations and Inequalities | F |  | P |  |
| PreTest Review | $\mathrm{F} / \mathrm{A}$ |  | P |  |
| Test -Rates of Change | O | C3.5, 3.6 <br>  <br>  D 1.1,1.2,1.3,1.4,1.5,1.6, | P | $\mathrm{K}(21 \%), \mathrm{T}(34 \%), \mathrm{A}(10 \%)$, |
| $1.7,1.8,1.9$ |  |  |  |  |
| $\mathrm{D} 4.1,4.2,4.3$ |  |  |  |  |



## Part 1: Terminology

 : a measure of the change in one quantity (the dependent variable) with respect to a change in another quantity (the independent variable).$\qquad$ : a line that passes through two points on the graph of a relation

$\qquad$ : a line that touches the graph of a relation at only one point within a small interval

An $\qquad$ is a change that takes place over an $\qquad$ , while an focus an average rates of change in this section.

An average rate of change corresponds to the slope of a $\qquad$ between two points on a curve.

$$
\text { Average rate of change }=\text { slope of secant }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{r i s e}{r u n}
$$



## Part 2: Average Rates of Change from a Table or Graph

Note: All $\qquad$ relationships have a constant rate of change. Average rate of change calculations over different intervals of the independent variable give the
$\qquad$ result.

We will be focusing on $\qquad$ relationships. Non-linear relationships do not have a constant rate of change. Average rate of change calculations over different intervals of the independent interval give $\qquad$ results.


Example 1: Andrew drains water from a hot tub. The tub holds 1600 L of water. It takes 2 hours for the water to drain completely. The volume $V$, in Liters, of water remaining in the tub at various times $t$, in minutes, is shown in the table and graph.
a) Calculate the average rate of change in volume during each of the following time intervals.
i) $30 \leq t \leq 90$
ii) $60 \leq t \leq 90$

| Time (min) | Volume (L) |
| :---: | :---: |
| 0 | 1600 |
| 10 | 1344 |
| 20 | 1111 |
| 30 | 900 |
| 40 | 711 |
| 50 | 544 |
| 60 | 400 |
| 70 | 278 |
| 80 | 178 |
| 90 | 100 |
| 100 | 44 |
| 110 | 10 |
| 120 | 0 |



iii) $90 \leq 110$
iv) $110 \leq 120$
b) Does the tub drain at a constant rate?

A $\qquad$ rate of change indicates the quantity of the dependent variable is decreasing over the interval. The secant line has a negative slope.

A $\qquad$ rate of change indicates the quantity of the dependent variable is increasing over the interval. The secant line has a positive slope.

## Part 2: Average Rate of Change from an Equation

Example 2: A rock is tossed upward from a cliff that is 120 meters above the water. The height of the rock above the water is modelled by $h(t)=-5 t^{2}+10 t+120$, where $h$ is the height in meters and $t$ is the time in seconds. Calculate the average rate of change in height during each time intervals.
a) $0 \leq t \leq 1$
b) $1 \leq t \leq 2$
c) $2 \leq t \leq 3$

## Part 1: Review of Average Rates of Change

An average rate of change corresponds to the slope of a
$\qquad$ between two points on a curve.

An instantaneous rate of change corresponds to the slope of a
$\qquad$ a one specific point on a curve.


Example 1: The height, $h$, in meters, after $t$ seconds is modelled by the equation $h(t)=-4.9 t^{2}+14 t+1$. Determine the average rate of change of the height of the ball for each time interval.
a) $[0,0.5]$

b) $[1,2.5]$

## Part 2: Find Instantaneous Rate of Change from a Graph or Table

Instantaneous Rate of Change: The exact rate of change of a function at one specific value of the independent variable. Can be estimated using average rates of change for small intervals of the independent variable.

Note: the best estimate for the instantaneous rate of change occurs when the interval used to calculate the average rate of change is made as small as possible.

Example 2: Find the instantaneous rate of change of the height of the ball at 2 seconds. The equation for the height of the ball is $h(t)=-4.9 t^{2}+14 t+1$.

## Method 1: Draw Tangent Line

The slope of a tangent at a point on a graph is equivalent to the instantaneous rate of change of a function at this point.


## Method 2: Choose a Surrounding Interval

Choose an interval that has the instantaneous rate of change location as its midpoint if possible.

For this example, choose the interval $\qquad$ .
Use the equation of the function to determine the corresponding $y$ values.


## Method 3: Averaging a Preceding and Following Interval

Calculate the average rate of change on either side of $t=2$ and then average them.
For this example, find the average rate of change for the intervals [1.5, 2 ] and $[2,2.5]$ and then average them.
Average Rate for interval [1.5, 2]

Average Rate for interval [2, 2.5]


Example 3: Consider the data from the Bank of Canada for the beginning of November in 2007. Estimate the instantaneous rate of change of the value of the Canadian Dollar on November $7^{\text {th }}$.

| Day | 1 | 2 | 5 | 7 | 8 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value of Canadian \$ <br> in US Cents | 94.99 | 93.59 | 93.39 | 91.70 | 93.06 | 96.43 | 96.07 |

## Method 1: Choose a Surrounding Interval

Use the interval $\qquad$

## Method 2: Averaging a Preceding and Following Interval (more accurate)

Average Rate for interval $\qquad$ Average Rate for interval $\qquad$

## Part 3: Find Instantaneous Rate of Change from an Equation

Squeezing a preceding or following interval is a technique for estimating instantaneous rates of change. By finding average rates of change that get progressively smaller, you can make more accurate estimates at to what the rate of change is $\qquad$ at an exact point.

Example 4: Use the chart below to estimate the slope of the tangent to the curve $f(x)=2 x^{3}-x$ at $x=2$.

| Interval | $\Delta \boldsymbol{y}$ | $\Delta \boldsymbol{x}$ |
| :---: | :---: | :---: | :---: |

By looking at the of the secant slopes as we $\qquad$ $x=2$, we can estimate the slope of the tangent to be:

MHF4U
Jensen

Part 1: Difference between Average and Instantaneous Rates of Change

| Average Rate of Change | Instantaneous Rate of Change |
| :--- | :--- |
| Over an interval | At one exact point |
| Slope of secant | Slope of tangent |
| Calculated | Estimated |
| $m$ | $\frac{d y}{d x}$ |

## Part 2: Estimating Instantaneous Rate of Change Using Difference Quotient

Looking at the graph of $f(x)=-0.2(x-5)^{2}+6$, points $P(x, f(x))$ and $Q(x+h, f(x+h))$ are on the graph of the function. By connecting the points we have a secant line.

Finding the slope of the secant line will tell us the average rate of change between the two points.


The closer we move point $Q$ towards point $P$, the closer the average rate of change will get to the instantaneous rate of change at $P$. In other words, the slope of the secant will get closer to the slope of the tangent line at P. Notice that the slope of PR is much closer to the tangent's slope than the slope of PQ is.


The smaller the difference in the $x$ values (smaller the secant line), the closer we get to the actual instantaneous rate of change. What if we put the difference in the $x$ values at 0 ? This would give us the instantaneous rate of change exactly, but how do we divide by 0 ?

It is often useful to find the general equation for instantaneous rate of change of $f(x)$ that can be used to find the slope of the tangent at any point throughout the domain. This equation is called the 'derivative' and is written as $f^{\prime}(x)$.

## Newton Quotient:

The instantaneous rate of change at any $x$ for $y=f(x)$ is

This is called "Derivative from First Principles."

Example 1: Find an equation for the instantaneous rate of change of $f(x)=\frac{1}{4} x^{2}-x+1$. Then use the equation to find $f^{\prime}(4)$.

Note: To find a general formula for instantaneous rate of change, leave the $x$ 's in the equation.

Example 2: Find a formula for the instantaneous rate of change for the function $f(x)=x^{2}-5 x+4$

## L4 - Limits

## MHF4U

Jensen

The Greek mathematician Archimedes developed a proof of the formula for the area of a circle, $A=\pi r^{2}$. His method, known as the "method of exhaustion," involved calculating the area of regular polygons inscribed in the circle. The area of the polygon provides an estimate of the area of the circle. As Archimedes increased the number of sides of the polygon, its shape come closer and closer to the shape of a circle. An octagon provides a much better estimate of the area of a circle than a square does. What about a myriagon, a polygon with 10000 sides?
 What happens to the estimate as the number of sides approaches infinity?

Archimedes' method of finding the area of a circle is based on the concept of a LIMIT. The circle is the limiting shape of the polygon. As the number of sides gets larger, the area of the polygon approaches its limit, the shape of a circle, without ever becoming an actual circle. You used a similar strategy to estimate the instantaneous rate of change of a function. Your estimate became increasingly accurate as the interval between two points was made smaller. Using limits, the interval can be made infinitely small, approaching zero. As this happens, the slope
 of the secant approaches its limiting value, the slope of the tangent.

## Section 1: Intro to Limits

Example 1: Complete the following table:

| $\boldsymbol{x}$ | 2 | 2.5 | 2.9 | 2.99 | 3 | 3.01 | 3.1 | 3.5 | 4 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}-\mathbf{2}$ |  |  |  |  |  |  |  |  |  |

Find the limit as $x$ approaches 3 from the left
$\lim _{x \rightarrow 3^{-}}\left(x^{2}-2\right)=$

Find the limit as $x$ approaches 3 from the right
$\lim _{x \rightarrow 3^{+}}\left(x^{2}-2\right)=$

Therefore, $\lim _{x \rightarrow 3}\left(x^{2}-2\right)=$

$$
\lim _{x \rightarrow a} f(x) \text { exists if the following } 3 \text { criteria are met }
$$

1. $\lim _{x \rightarrow a^{-}} f(x)$ exists
2. $\lim _{x \rightarrow a^{+}} f(x)$ exists
3. $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$

## Section 2: Find limits from a graph

Example 2: Given the following graph of the piecewise function $f(x)=\left\{\begin{array}{c}x-1, \text { if } x<1 \\ 1, \text { if } x=1 \\ 2+\sqrt{x-1}, \text { if } x>1\end{array}\right.$
$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow 1^{+}} f(x)=$
$\therefore \lim _{x \rightarrow 1} f(x)$


Example 3: Use the graph of $f(x)=\frac{x+1}{x-4}$ to find:
$\lim _{x \rightarrow 4^{-}} f(x)=$
$\lim _{x \rightarrow 4^{+}} f(x)=$
$\therefore \lim _{x \rightarrow 4} f(x)$

$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=$

## Section 3: Limit of a Function from Graph (indeterminate form)

Example 4: Analyze the equation, table, and graph of $f(x)=\frac{x^{2}-1}{x-1}$ to find $\lim _{x \rightarrow 1} f(x)$

| $x$ approaches 1 from the left $\rightarrow$ |  |  |  |  |  |  | $\leftarrow x$ approaches 1 from the right |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{x}$ | 0 | 0.5 | 0.9 | 0.99 | 0.999 | 1 | 1.001 | 1.01 | 1.1 | 1.5 | 2 |
| $\frac{x^{2}-1}{x-1}$ | 1 | 1.5 | 1.9 | 1.99 | 1.999 | undefined | 2.001 | 2.01 | 2.1 | 2.5 | 3 |
| $f(x)=\frac{x^{2}-1}{x-1}$ approaches 2 from below $\rightarrow$ |  |  |  |  |  |  | $\leftarrow f(x)=\frac{x^{2}-1}{x-1}$ approaches 2 from above |  |  |  |  |

This table and graph suggests that
$\lim _{x \rightarrow 1^{-}} f(x)=$

$\lim _{x \rightarrow 1^{+}} f(x)=$
$\therefore \lim _{x \rightarrow 1} f(x)$

However, when plugging in $x=1$ in to the equation, we get $\frac{0}{0}$ which is called the indeterminate form. The function is not defined at this point. However, it is not necessary for the function to be defined at a point for its limit to exist. Try factoring to see if it has a removable discontinuity:
$\lim _{x \rightarrow 1} f(x)=$

## Section 4: Limit of a Function from an Equation (indeterminate form)

Example 5: Find the following limits.
a) $\lim _{x \rightarrow-1} \frac{x^{2}-4}{x^{2}+3}$
b) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$

