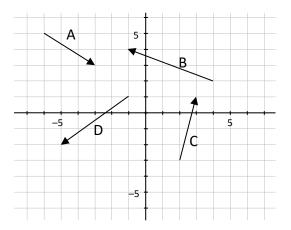

Name:

Unit 5- Cartesian Vectors


WORKBOOK

MCV4U

W1 – Cartesian Vec MCV4U Jensen	<mark>:tors</mark>		Unit 5
1) Express each vec	tor in terms of the unit vecto	ors $\hat{\iota}$ and \hat{j} .	
a) [–2, 0]	b) [0, 3]	c) [3, 2]	d) [–1, 6]
2) Express each vec	tor as a position vector [<i>a, b</i>].	
a) $3\hat{\imath} + 2\hat{j}$	b) 4 \hat{j}	c) $-7\hat{\imath} + 3\hat{\jmath}$	d) -9î

3) Write the coordinates of each Cartesian vector and determine the magnitude.

4) Given the vector $\vec{v} = [2, -5]$.

a) State the vertical and horizontal vector components of \vec{v} .

b) Find two vectors that are collinear with \vec{v} .

5) If $\vec{u} = [-3, 5]$ and $\vec{v} = [2, 9]$.

a) $\vec{u} + \vec{v}$	b) \hat{u}	c) $-3\vec{u} + 4\vec{v}$
d) $7\vec{u} + 6\hat{\imath} - 8\hat{\jmath} - 3\vec{v}$	e) $ec{v}$	f) $ -3\vec{u}-2\vec{v} $

6. Write each force as a Cartesian vector.

a) 750 N applied 45° to the horizontal b) 215 N applied 68° to the vertical

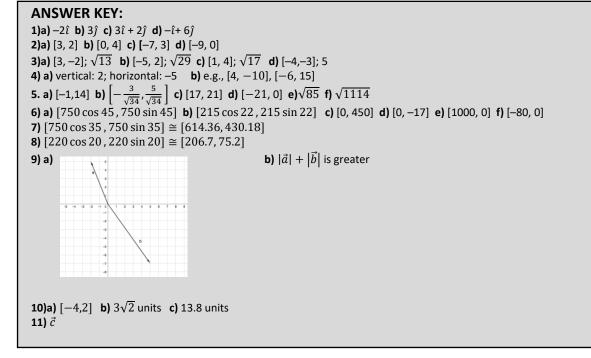
c) 450 N applied upwards

d) 17 N applied downwards

7) An aircraft is travelling at 750 km per hour at an angle of 35° to the level ground below. Find the force in component form as a Cartesian vector.

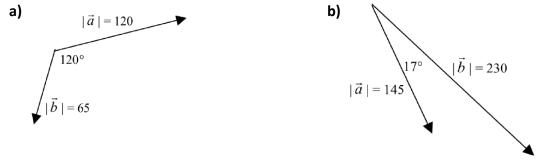
8) A mom is pulling a sled exerting a force of 220 N along a rope that makes an angle of 20° to the horizontal. Write this force in component form as a Cartesian vector.

-


<u></u> ↑ y
+ + + + 9 + + + + + + + + + + + + + + +
+ + + + 8 + + + + + + + + + + + +
+ + + + 7 + + + + + + + + + + + + +
+ + + + 6 + + + + + + + + + + + +
+ + + + 5 + + + + + + + + + + + +
+ + + + 4 + + + + + + + + + + + + + + +
+ + + + 3 + + + + + + + + + + + +
+ + + + 2 + + + + + + + + + + + +
* * * * 1 + * * * * * * * * *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+ + + +-2 + + + + + + + + + + + + +
+ + + +_3 + + + + + + + + + + + +
+ + + +_4 + + + + + + + + + + + + + + +
+ + + +_5 + + + + + + + + + + + +
+ + + +-6 + + + + + + + + + + + +
+ + + +_7 + + + + + + + + + + +
+ + + +_8+ + + + + + + + + + + +
+ + + +_8 + + + + + + + + + + + + + + +
5

10) Given the points P(-6,1), Q(-2,-1), and R(-3,4), find...

a)
$$\overrightarrow{QP}$$
 b) $|\overrightarrow{RP}|$ **c**) perimeter of ΔPQR


11) Which vector is NOT colinear with $\vec{a} = [6, -4]$?

$$\vec{b} = [3, -2], \vec{c} = [-6, -4], \vec{d} = [-6, 4], \text{ or } \vec{e} = [-9, 6]$$

1) Calculate the dot product for each pair.

- 2) Calculate the dot product for each pair of vectors. θ is the angle between the vectors when they are placed tail to tail.
- **a)** $|\vec{u}| = 7$, $|\vec{v}| = 12$, and $\theta = 47^{\circ}$ **b)** $|\vec{s}| = 520$, $|\vec{t}| = 745$, and $\theta = 135^{\circ}$

3) Calculate the dot product of each pair of vectors.

a) $\vec{a} = [5, 8], \vec{b} = [-2, 1]$ **b)** $\vec{c} = [-1, 8], \vec{d} = [3, -3]$

c) $\vec{l} = 2\hat{\imath} - 3\hat{\jmath}$, $\vec{m} = -9\hat{\imath} + 4\hat{\jmath}$ d) $\vec{u} = -6\hat{\imath} + 7\hat{\jmath}$, $\vec{v} = 3\hat{\imath} - 2\hat{\jmath}$ 4) Decide whether the following expressions have meaning or not. If not, explain why.

a) $\vec{u} \cdot (\vec{v} \cdot \vec{w})$ b) $|\vec{u} \cdot \vec{v}|$ c) $\vec{u} (\vec{v} \cdot \vec{w})$ d) $|\vec{u}|^2$ e) \vec{v}^2 f) $(\vec{u} \cdot \vec{v})^2$

5) Let $\vec{a} = [1, -2]$, $\vec{b} = [2, 5]$, and $\vec{c} = [4, -1]$. Evaluate the following if possible. If not possible, explain why not.

a) $\vec{a} \cdot (\vec{b} + \vec{c})$ **b)** $(\vec{a} + \vec{b}) \cdot \vec{c}$

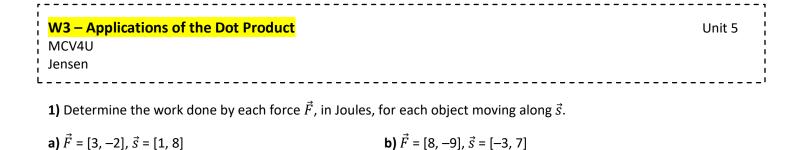
c)
$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{c})$$
 d) $(3\vec{a} + 2\vec{b}) \cdot (4\vec{a} - \vec{b})$

e) $\vec{a} \cdot \vec{b} \cdot \vec{c}$
--

f) $\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

g) $4\vec{b} \cdot (-2\vec{c})$

h) $(\vec{a} + \vec{b}) \cdot \vec{c}$


6) Determine a value of t so that $\vec{u} = [9, t]$ and $\vec{v} = [-16, t]$ are perpendicular.

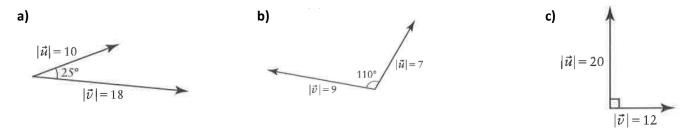
7) Find a vector that is perpendicular to $\vec{a} = [3, -1]$. Verify that the vectors are perpendicular.

8) Which of the following is a right-angled triangle? Identify the right angle in that triangle.

- $\triangle ABC$ for A(3,1), B(-2,3), and C(5,6)
- ΔSTU for S(4,6), T(-3,7), and U(-5,-4)

ANSWER KEY: 1)a) -3900 b) 31892.762)a) 57.29 b) -273 933.173)a) -2 b) -27 c) -30 d) -324)a) no, you cannot dot a vector with a scalar b) yes c) yes d) yes e) no, you cannot multiply vectors f) yes 5)a) -2 b) 9 c) 6 d) -38 e) not possible- you cannot dot a vector with a scalar f) -2 g) -24 h) 9 6) t = 12, -127) Answers may vary: [-1, -3], [1, 3], check using the dot product 8) ΔABC is a right triangle; the right angle is $\angle BAC$

2) Determine the work done by the force \vec{F} , in Joules, for each object moving along \vec{s} .



3) Determine the angle between the vectors in each pair.

a)
$$\vec{p} = [6, 7]$$
 and $\vec{q} = [3, 2]$
b) $\vec{r} = [-1, -7]$ and $\vec{s} = [5, 4]$

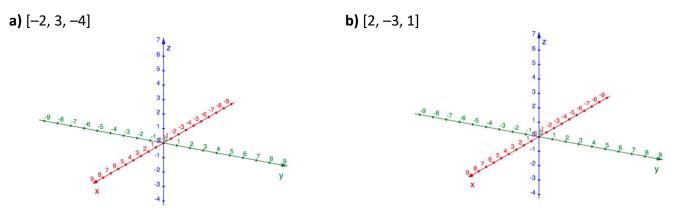
4) Determine the projection of the first vector on the second.

a) $\vec{a} = [6, -1], \vec{b} = [3, -4]$ **b)** $\vec{c} = [6, 7], \vec{d} = [3, 2]$ **5)** Determine the projection of \vec{u} on \vec{v}

6) For each of the following, find the magnitude of the projection of \vec{x} on \vec{y} and also the vector projection of \vec{x} on \vec{y} .

a) $\vec{x} = [1,1], \vec{y} = [1,-1]$ **b)** $\vec{x} = [2,5], \vec{y} = [-5,12]$

7) Δ DEF has vertices D(-3, 5), E(2, 3), and F(6, 7). Calculate \angle DEF.

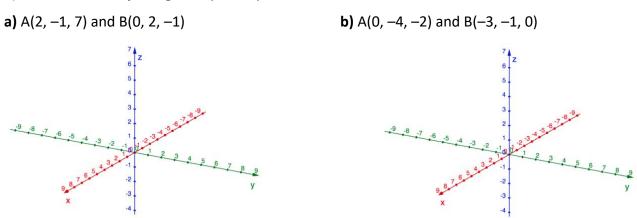

8) How much work is done against gravity by the orderly pushing an 85 kg person up a 5 m ramp inclined at an angle of 15° to the horizontal?

9) A stage lamp is dragged 15 m along level ground by a 120 N force applied at an angle of 35° to the ground. It is then dragged up a 12m ramp, inclined at 15° to the ground, onto a stage using the same force. Find the total work done.

10) A box on a wagon pulled a distance of 35 m by a 27 N force applied at an angle of 40° to the ground. The box is then lifted a distance of 1.5 m and placed on a table by exerting a force of 37 N. Find the total work done.

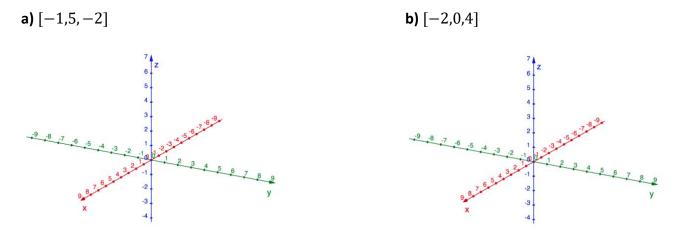
ANSWER KEY
1)a) -13 b) -87
2)a) 826.59 b) 4.27
3)a)
$$\theta = 15.71^{\circ}$$
 b) $\theta = 136.79^{\circ}$
4)a) $\left[\frac{66}{25}, -\frac{88}{25}\right]$ b) $\left[\frac{96}{13}, \frac{64}{13}\right]$
5)a) 9.06 ϑ b) -2.39 ϑ c) $\vec{0}$
6) magnitude = 0, vector projection: $\vec{0}$ b) magnitude = $\frac{50}{13}$, vector projection: $\left[\frac{-250}{169}, \frac{600}{169}\right]$
7) 113.2°
8) 1077.98 J
9) 2827.63 J
10) 779.4 J

1) Draw the position vectors.

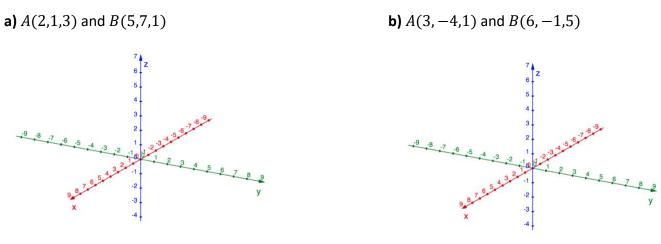

2) Express each vector as the sum of \hat{i} , \hat{j} and \hat{k} .

a) [2, -1, 7] **b)**[-4, -6, 5]

3) Express each vector in the form [*a*, *b*, *c*].


a) $3\hat{\imath} - 4\hat{\jmath} + 5\hat{k}$ **b)** $2\hat{\imath} + 3\hat{k}$

c) $-8\hat{i} + 9\hat{j} - 4\hat{k}$ **d**) $-8\hat{j} - 7\hat{k}$


4) Draw vector \overrightarrow{AB} joining each pair of points. Then write the vector in the form [a, b, c].

5) Draw each position vector. Then find its magnitude.

6) Find a and b such that $\vec{u} = [a, 3, 6]$ and $\vec{v} = [-8, 12, b]$ are collinear.

7) Draw the vector \overrightarrow{AB} joining each pair of points. Write the vector in the form [x, y, z]. Then determine the exact magnitude of the vector.

8) Evaluate each given the vectors $\vec{a} = [-2, 1, 8]$, $\vec{b} = [3, 1, -2]$, and $\vec{c} = [2, -3, 4]$. **a)** $3\vec{b}$ **b)** $\vec{b} - \vec{c}$ **c)** $2\vec{a} - 3\vec{c} + 4\vec{b}$

d)
$$(\vec{a} + \vec{b}) - (\vec{a} + \vec{c})$$
 e) $\vec{b} \cdot \vec{c}$ f) $\vec{a} \cdot \vec{b} - \vec{c} \cdot \vec{b}$

9) Let
$$\vec{a} = 3\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$$
, $\vec{b} = 7\hat{\imath} + 4\hat{\jmath} - \hat{k}$ and $\vec{c} = -2\hat{\imath} + 5\hat{\jmath} + 9\hat{k}$.
a) $(\vec{a} + \vec{b}) \cdot \vec{c}$
b) $2\vec{a} \cdot (4\vec{b} - 3\vec{c})$

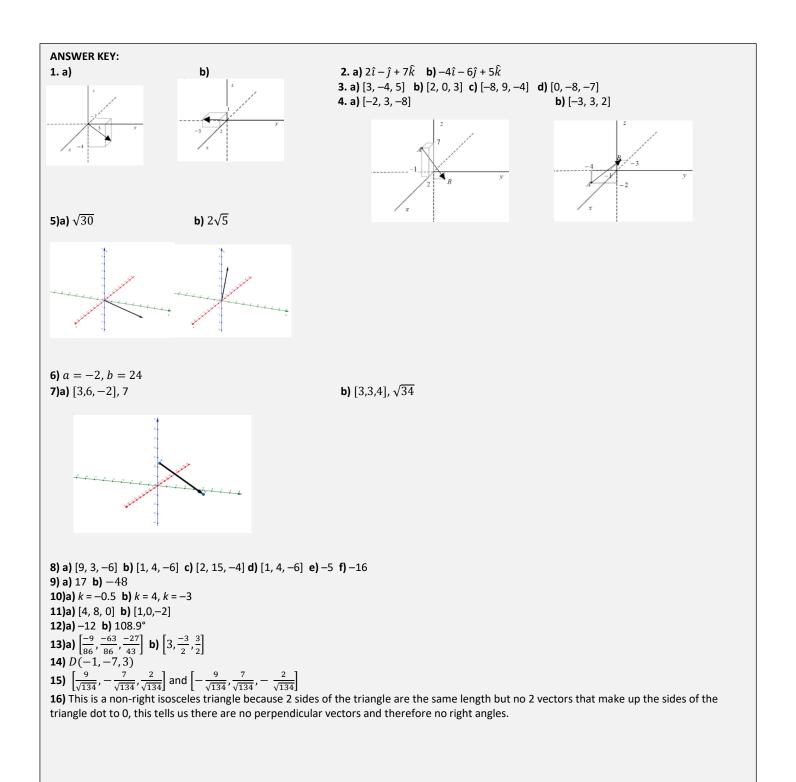
10) Determine the values of k such that \vec{u} and \vec{v} are orthogonal.

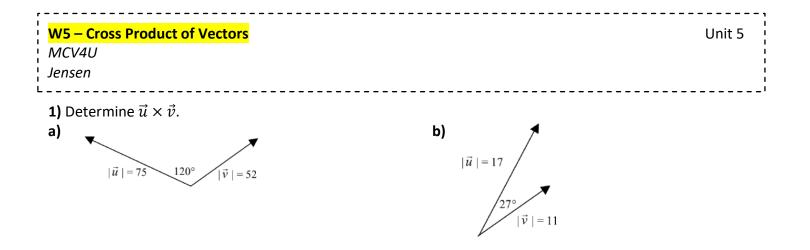
a) $\vec{u} = [2, k, -1]$ and $\vec{v} = [3, -2, 7]$ **b)** $\vec{u} = [-3, 1, k]$ and $\vec{v} = [4, -k, k]$ **11)** Find a vector orthogonal to each vector.

a) [2, −1, 7]

12) Consider the vectors $\vec{u} = [3, -5, 8]$ and $\vec{v} = [3, 1, -2]$.

a) Find $\vec{u} \cdot \vec{v}$.


b) Calculate the angle between \vec{u} and \vec{v} .


13) Determine the projection of \vec{a} on \vec{b} . **a)** $\vec{a} = [2, 1, -3]$ and $\vec{b} = [1, 7, 6]$ **b)** $\vec{a} = [3, 4, 7]$ and $\vec{b} = [2, -1, 1]$

14) The initial point of vector $\overrightarrow{CD} = [2, -9, 1]$ is C(-3, 2, 2) determine the coordinates of D.

15) Find 2 unit vectors that are parallel to $\vec{a} = [9, -7, 2]$.

16) A triangle has vertices at the points D = (3, -2, -3), E(7, 0, 1) and F(1, 2, 1). What type of triangle is \triangle *DEF*? Explain.

c) \vec{u} = [2, -1, 7], \vec{v} = [2, 1, 3]

d) $\vec{u} = [-3, 4, 7], \vec{v} = [4, 3, -5]$

e) $\vec{u} = 3\hat{\imath} + 4\hat{\jmath} - \hat{k}$ $\vec{v} = 5\hat{\imath} + \hat{\jmath} - 2\hat{k}$

f) $\vec{u} = 2\hat{\imath} - 3\hat{\jmath} + 7\hat{k}$ $\vec{v} = -\hat{\imath} + \hat{\jmath}$

2) Find a vector perpendicular to each of the following pairs of vectors. Use the dot product to check your answer.

a) [5, 0, 1] and [-2, 5, 8]

b) [1, 4, -2] and [-4, 9, 0]

3) Find a unit vector perpendicular to $\vec{a} = [6, -2, -3]$ and $\vec{b} = [5, 1, -4]$.

4) Given $\vec{a} = [1, -2, -1]$, $\vec{b} = [2, 2, -1]$ and $\vec{c} = [2, -3, -4]$, evaluate each of the following: **a)** $\vec{a} \times (\vec{b} \times \vec{c})$ **b)** $(\vec{a} \times \vec{b}) \times \vec{c}$ **e)** $(\vec{a} \times \vec{c}) \cdot \vec{b}$

f) $(\vec{a} \times \vec{b}) \cdot \vec{c}$

g) $\left| \vec{a} \times \vec{b} \right|$

h) $\left| \vec{a} \times (\vec{b} - \vec{c}) \right|$

5) Use the cross product to determine the angles between the vectors $\vec{a} = [2, 1, -3]$ and $\vec{b} = [5, -4, 3]$. Consider ambiguous case. Use dot product to confirm or use graphing software to inspect.

6) Determine the area of $\triangle PQR$ with vertices of P(3, -2, 7), Q(2, 2, -3), and R(1, 1, 2).

7) Determine the area of the parallelogram ABCD defined by the vertices A(2, -1, -1), B(-4, -2, 3), C(2, 3, 2), and D(8, 4, -2).

ANSWER KEY: 1)a) $-3377.5\hat{n}$ or 3377.5 in to the page b) $-84.9\hat{n}$ or 84.9 in to the page c) [-10, 8, 4] d) [-41, 13, -25] e) [-7, 1, -17] f) [-7, -7, -1]2)a) [-5, -42, 25] b) [18, 8, 25]3) $\frac{1}{\sqrt{458}}$ [11, 9, 16]4)a) [26, 21, -16] b) [22, 28, -10] c) [1, 3, -5] d) [-33, 18, -30] e) 13 f) -13 g) $\sqrt{53}$ h) $\sqrt{35}$ 5) 96.5° 6) $2.5\sqrt{14}$ units² 7) $\sqrt{1261}$ units²

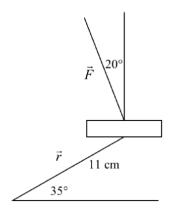
W6 – Applications of Dot and Cross Product	Unit 5
MCV4U	
Jensen	

2) Determine the projection, and its magnitude of \vec{u} on \vec{v} .

a) $\vec{u} = [2, 1, 7], \vec{v} = [-7, 2, 6]$ **b)** $\vec{u} = 7\hat{\imath} - 6\hat{\jmath} + 5\hat{k}, \ \vec{v} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$

3) Determine the work done in the direction of travel.

a) $\vec{F} = [200, 150, 75], \vec{s} = [2, -1, 8]$ **b)** $\vec{F} = -3\hat{\iota} + 9\hat{j} + 5\hat{k}, \vec{s} = 2\hat{\iota} + 5\hat{j} + 3\hat{k}$ 4) Find the area of the parallelogram with sides consisting of the vectors.


a) $\vec{a} = [-4, 5, -8], \vec{b} = [1, -2, 3]$ **b)** $\vec{a} = [9, -5, 7], \vec{b} = [3, -2, 5]$

5) Find the area of the triangle with the given vertices.

a) A(0, 2, 4), B(3, -2, 1), C(4, -2, 5) **b)** A(-2, 4, 5), B(1, 4, 2), C(7, 4, 9)

6) Determine the volume of the parallelepiped determined by the vectors.

a) $\vec{a} = [2, 5, -8], \vec{b} = [7, -2, 3], \text{ and } \vec{c} = [8, 2, -1]$ **b)** $\vec{a} = [1, -5, 9], \vec{b} = [3, 4, -7], \text{ and } \vec{c} = [1, 0, 2]$ 7) Find the torque produced by a cyclist exerting a force of 85 N on the pedal in the position shown in the diagram, if the shaft of the petal is 11 cm long.

8) A woman pushes her baby stroller a distance of 1500 m by a force of 89 N applied at an angle of 35° to the roadway. Calculate the work done.

9) Determine the work done by gravity in causing a 45 kg child to slide down a 55 m slope, which has an angle of 47° to the horizontal.

- **10)** A force of 75 N is applied to a wrench in a clockwise direction at 52° to the handle, 17 cm from the centre of the bolt.
- a) Calculate the magnitude of the torque.

b) In what direction does the bolt move?

ANSWER KEY: 1. a) -119 b) 119 2. a) $\frac{30}{89}$ [-7, 2, 6]; $\frac{30}{\sqrt{89}}$ b) $\frac{38}{14}$ [3, -2, 1]; $\frac{38}{\sqrt{14}}$ 3. a) 850 J b) 54 J 4. a) $\sqrt{26}$ units² b) $\sqrt{706}$ units² 5. a) $\frac{\sqrt{497}}{2}$ units² b) $\frac{39}{2}$ units² 6. a) 93 units³ b) 37 units³ 7. 9.03 N·m 8. 109 356.8 J 9. 17 738.98 J 10. a) 10.05 N·m b) The bolt is being tightened into the material