Unit 5- Cartesian Vectors

WORKBOOK

MCV4U

1) Express each vector in terms of the unit vectors $\hat{\imath}$ and $\hat{\jmath}$.
a) $[-2,0]$
b) $[0,3]$
c) $[3,2]$
d) $[-1,6]$
2) Express each vector as a position vector $[a, b]$.
a) $3 \hat{\imath}+2 \hat{\jmath}$
b) $4 \hat{\jmath}$
c) $-7 \hat{\imath}+3 \hat{\jmath}$
d) $-9 \hat{\imath}$
3) Write the coordinates of each Cartesian vector and determine the magnitude.

4) Given the vector $\vec{v}=[2,-5]$.
a) State the vertical and horizontal vector components of \vec{v}.
b) Find two vectors that are collinear with \vec{v}.
5) If $\vec{u}=[-3,5]$ and $\vec{v}=[2,9]$.
a) $\vec{u}+\vec{v}$
b) \hat{u}
c) $-3 \vec{u}+4 \vec{v}$
d) $7 \vec{u}+6 \hat{\imath}-8 \hat{\jmath}-3 \vec{v}$
e) $|\vec{v}|$
f) $|-3 \vec{u}-2 \vec{v}|$
6. Write each force as a Cartesian vector.
a) 750 N applied 45° to the horizontal
b) 215 N applied 68° to the vertical
e) 1000 N east
7) An aircraft is travelling at 750 km per hour at an angle of 35° to the level ground below. Find the force in component form as a Cartesian vector.
8) A mom is pulling a sled exerting a force of 220 N along a rope that makes an angle of 20° to the horizontal. Write this force in component form as a Cartesian vector.
9) Let $\vec{a}=[-2,5]$ and $\vec{b}=[5,-7]$.
a) Plot the two vectors.
b) Which is greater: $|\vec{a}+\vec{b}|$ or $|\vec{a}|+|\vec{b}|$?

10) Given the points $P(-6,1), Q(-2,-1)$, and $R(-3,4)$, find...
a) $\overrightarrow{Q P}$
b) $|\overrightarrow{R P}|$
c) perimeter of $\triangle P Q R$
11) Which vector is NOT colinear with $\vec{a}=[6,-4]$?
$\vec{b}=[3,-2], \vec{c}=[-6,-4], \vec{d}=[-6,4]$, or $\vec{e}=[-9,6]$
```
ANSWER KEY:
1)a) -2î b) 3\hat{ c) 3î+ 2\hat{j} d) -\hat{\imath}+6\hat{\jmath}}\mathbf{}\mathrm{ (})
2)a) [3,2] b) [0,4] c) [-7,3] d) [-9, 0]
3)a) [3,-2]; \sqrt{}{13}}\mathrm{ b) [-5, 2]; }\sqrt{}{29}\mathrm{ c) [1,4]; }\sqrt{}{17}\mathrm{ d) [-4,-3];5
4) a) vertical: 2; horizontal: -5 b) e.g., [4, -10], [-6, 15]
5. a) [-1,14] b) [-\frac{3}{\sqrt{}{34}},\frac{5}{\sqrt{}{34}}]\mathrm{ c) [17,21] d) [-21,0] e) }\sqrt{}{85}\mathrm{ f) }\sqrt{}{1114}
6) a) [750 cos 45,750 \operatorname{sin}45] b) [215\operatorname{cos}22,215\operatorname{sin}22] c) [0,450] d) [0,-17] e) [1000,0] f) [-80,0]
7) [750}\operatorname{cos}35,750\operatorname{sin}35]\cong[614.36,430.18
8) [220 cos 20, 220 \operatorname{sin}20]\cong[206.7,75.2]
9) a)
b) }|\vec{a}|+|\vec{b}|\mathrm{ is greater
10)a) \([-4,2]\) b) \(3 \sqrt{2}\) units c) 13.8 units
11) \(\vec{c}\)
```

1) Calculate the dot product for each pair.
a)

b)

2) Calculate the dot product for each pair of vectors. θ is the angle between the vectors when they are placed tail to tail.
a) $|\vec{u}|=7,|\vec{v}|=12$, and $\theta=47^{\circ}$
b) $|\vec{s}|=520,|\vec{t}|=745$, and $\theta=135^{\circ}$
3) Calculate the dot product of each pair of vectors.
a) $\vec{a}=[5,8], \vec{b}=[-2,1]$
b) $\vec{c}=[-1,8], \vec{d}=[3,-3]$
c) $\vec{l}=2 \hat{\imath}-3 \hat{\jmath}, \vec{m}=-9 \hat{\imath}+4 \hat{\jmath}$
d) $\vec{u}=-6 \hat{\imath}+7 \hat{\jmath}, \vec{v}=3 \hat{\imath}-2 \hat{\jmath}$
4) Decide whether the following expressions have meaning or not. If not, explain why.
a) $\vec{u} \cdot(\vec{v} \cdot \vec{w})$
b) $|\vec{u} \cdot \vec{v}|$
c) $\vec{u}(\vec{v} \cdot \vec{w})$
d) $|\vec{u}|^{2}$
e) \vec{v}^{2}
f) $(\vec{u} \cdot \vec{v})^{2}$
5) Let $\vec{a}=[1,-2], \vec{b}=[2,5]$, and $\vec{c}=[4,-1]$. Evaluate the following if possible. If not possible, explain why not.
a) $\vec{a} \cdot(\vec{b}+\vec{c})$
b) $(\vec{a}+\vec{b}) \cdot \vec{c}$
c) $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{c})$
d) $(3 \vec{a}+2 \vec{b}) \cdot(4 \vec{a}-\vec{b})$
e) $\vec{a} \cdot \vec{b} \cdot \vec{c}$
f) $\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
g) $4 \vec{b} \cdot(-2 \vec{c})$
h) $(\vec{a}+\vec{b}) \cdot \vec{c}$
6) Determine a value of t so that $\vec{u}=[9, t]$ and $\vec{v}=[-16, t]$ are perpendicular.
7) Find a vector that is perpendicular to $\vec{a}=[3,-1]$. Verify that the vectors are perpendicular.
8) Which of the following is a right-angled triangle? Identify the right angle in that triangle.

- $\triangle A B C$ for $A(3,1), B(-2,3)$, and $C(5,6)$
- $\quad \Delta S T U$ for $S(4,6), T(-3,7)$, and $U(-5,-4)$

```
ANSWER KEY:
1)a) -3900 b) 31892.76
2)a) 57.29 b) -273 933.17
3)a) -2 b) -27 c) -30 d) -32
4)a) no, you cannot dot a vector with a scalar b) yes c) yes d) yes e) no, you cannot multiply vectors f) yes
5)a) -2 b) 9 c) 6 d) -38 e) not possible- you cannot dot a vector with a scalar f) -2 g) -24 h) 9
6) }t=12,-1
7) Answers may vary: [ -1, -3], [1,3], check using the dot product
8) }\triangleABC\mathrm{ is a right triangle; the right angle is }\angleBA
```

1) Determine the work done by each force \vec{F}, in Joules, for each object moving along \vec{s}.
a) $\vec{F}=[3,-2], \vec{s}=[1,8]$
b) $\vec{F}=[8,-9], \vec{s}=[-3,7]$
2) Determine the work done by the force \vec{F}, in Joules, for each object moving along \vec{s}.
a)

b)

3) Determine the angle between the vectors in each pair.
a) $\vec{p}=[6,7]$ and $\vec{q}=[3,2]$
b) $\vec{r}=[-1,-7]$ and $\vec{s}=[5,4]$
4) Determine the projection of the first vector on the second.
a) $\vec{a}=[6,-1], \vec{b}=[3,-4]$
b) $\vec{c}=[6,7], \vec{d}=[3,2]$
5) Determine the projection of \vec{u} on \vec{v}
a)

b)

c)

6) For each of the following, find the magnitude of the projection of \vec{x} on \vec{y} and also the vector projection of \vec{x} on \vec{y}.
a) $\vec{x}=[1,1], \vec{y}=[1,-1]$
b) $\vec{x}=[2,5], \vec{y}=[-5,12]$
7) $\triangle D E F$ has vertices $D(-3,5), E(2,3)$, and $F(6,7)$. Calculate $\angle D E F$.
8) How much work is done against gravity by the orderly pushing an 85 kg person up a 5 m ramp inclined at an angle of 15° to the horizontal?
9) A stage lamp is dragged 15 m along level ground by a 120 N force applied at an angle of 35° to the ground. It is then dragged up a 12 m ramp, inclined at 15° to the ground, onto a stage using the same force. Find the total work done.
10) A box on a wagon pulled a distance of 35 m by a 27 N force applied at an angle of 40° to the ground. The box is then lifted a distance of 1.5 m and placed on a table by exerting a force of 37 N . Find the total work done.
```
ANSWER KEY
1)a) -13 b) -87
2)a)}826.59 b) 4.27
3)a)}0=15.7\mp@subsup{1}{}{\circ}\mathrm{ b) }0=136.7\mp@subsup{9}{}{\circ
4)a)}[\frac{66}{25},-\frac{88}{25}]\mathrm{ b) }[\frac{96}{13},\frac{64}{13}
5)a) 9.06\hat{v}
6) magnitude =0, vector projection: }\vec{0}\mathrm{ b) magnitude = 年13}\mathrm{ , vector projection: [-250
7) }113.\mp@subsup{2}{}{\circ
8) }1077.98\textrm{J
9) 2827.63 J
10)}779.4 J
```

1) Draw the position vectors.
a) $[-2,3,-4]$
b) $[2,-3,1]$

2) Express each vector as the sum of $\hat{\imath}, \hat{\jmath}$ and \hat{k}.
a) $[2,-1,7]$
b) $[-4,-6,5]$
3) Express each vector in the form [a, b, c].
a) $3 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$
b) $2 \hat{\imath}+3 \hat{k}$
c) $-8 \hat{\imath}+9 \hat{\jmath}-4 \hat{k}$
d) $-8 \hat{\jmath}-7 \hat{k}$
4) Draw vector $\overrightarrow{A B}$ joining each pair of points. Then write the vector in the form $[a, b, c]$.
a) $\mathrm{A}(2,-1,7)$ and $\mathrm{B}(0,2,-1)$
b) $\mathrm{A}(0,-4,-2)$ and $\mathrm{B}(-3,-1,0)$

5) Draw each position vector. Then find its magnitude.
a) $[-1,5,-2]$
b) $[-2,0,4]$

6) Find a and b such that $\vec{u}=[a, 3,6]$ and $\vec{v}=[-8,12, b]$ are collinear.
7) Draw the vector $\overrightarrow{A B}$ joining each pair of points. Write the vector in the form $[x, y, z]$. Then determine the exact magnitude of the vector.
a) $A(2,1,3)$ and $B(5,7,1)$
b) $A(3,-4,1)$ and $B(6,-1,5)$

8) Evaluate each given the vectors $\vec{a}=[-2,1,8], \vec{b}=[3,1,-2]$, and $\vec{c}=[2,-3,4]$.
a) $3 \vec{b}$
b) $\vec{b}-\vec{c}$
c) $2 \vec{a}-3 \vec{c}+4 \vec{b}$
d) $(\vec{a}+\vec{b})-(\vec{a}+\vec{c})$
e) $\vec{b} \cdot \vec{c}$
f) $\vec{a} \cdot \vec{b}-\vec{c} \cdot \vec{b}$
9) Let $\vec{a}=3 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}, \vec{b}=7 \hat{\imath}+4 \hat{\jmath}-\hat{k}$ and $\vec{c}=-2 \hat{\imath}+5 \hat{\jmath}+9 \hat{k}$.
a) $(\vec{a}+\vec{b}) \cdot \vec{c}$
b) $2 \vec{a} \cdot(4 \vec{b}-3 \vec{c})$
10) Determine the values of k such that \vec{u} and \vec{v} are orthogonal.
a) $\vec{u}=[2, k,-1]$ and $\vec{v}=[3,-2,7]$
b) $\vec{u}=[-3,1, k]$ and $\vec{v}=[4,-k, k]$
11) Find a vector orthogonal to each vector.
a) $[2,-1,7]$
b) $[8,-3,4]$
12) Consider the vectors $\vec{u}=[3,-5,8]$ and $\vec{v}=[3,1,-2]$.
a) Find $\vec{u} \cdot \vec{v}$.
b) Calculate the angle between \vec{u} and \vec{v}.
13) Determine the projection of \vec{a} on \vec{b}.
a) $\vec{a}=[2,1,-3]$ and $\vec{b}=[1,7,6]$
b) $\vec{a}=[3,4,7]$ and $\vec{b}=[2,-1,1]$
14) The initial point of vector $\overrightarrow{C D}=[2,-9,1]$ is $C(-3,2,2)$ determine the coordinates of D.
15) Find 2 unit vectors that are parallel to $\vec{a}=[9,-7,2]$.
16) A triangle has vertices at the points $D=(3,-2,-3), E(7,0,1)$ and $F(1,2,1)$. What type of triangle is Δ $D E F$? Explain.

ANSWER KEY:

1. a)

5)a) $\sqrt{30}$
b) $2 \sqrt{5}$
b)

6) $a=-2, b=24$
7)a) $[3,6,-2], 7$
b) $[3,3,4], \sqrt{34}$

$\begin{array}{ll}\text { 2. a) } 2 \hat{\imath}-\hat{\jmath}+7 \hat{k} & \text { b) }-4 \hat{\imath}-6 \hat{\jmath}+5 \hat{k}\end{array}$
$\begin{array}{lll}\text { 3. a) }[3,-4,5] & \text { b) }[2,0,3] & \text { c) }[-8,9,-4]\end{array}$ d) $[0,-8,-7]$
4. a) $[-2,3,-8]$
b) $[-3,3,2]$

8) a) $[9,3,-6]$ b) $[1,4,-6]$ c) $[2,15,-4]$ d) $[1,4,-6]$ e) -5 f) -16
9) a) 17 b) -48
10)a) $k=-0.5$ b) $k=4, k=-3$
11)a) $[4,8,0]$ b) $[1,0,-2]$
12)a) -12 b) 108.9°
13)a) $\left[\frac{-9}{86}, \frac{-63}{86}, \frac{-27}{43}\right]$ b) $\left[3, \frac{-3}{2}, \frac{3}{2}\right]$
14) $D(-1,-7,3)$
15) $\left[\frac{9}{\sqrt{134}},-\frac{7}{\sqrt{134}}, \frac{2}{\sqrt{134}}\right]$ and $\left[-\frac{9}{\sqrt{134}}, \frac{7}{\sqrt{134}},-\frac{2}{\sqrt{134}}\right]$
16) This is a non-right isosceles triangle because 2 sides of the triangle are the same length but no 2 vectors that make up the sides of the triangle dot to 0 , this tells us there are no perpendicular vectors and therefore no right angles.

1) Determine $\vec{u} \times \vec{v}$.
a)

b)

c) $\vec{u}=[2,-1,7], \vec{v}=[2,1,3]$
d) $\vec{u}=[-3,4,7], \vec{v}=[4,3,-5]$
e) $\vec{u}=3 \hat{\imath}+4 \hat{\jmath}-\hat{k} \quad \vec{v}=5 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
f) $\vec{u}=2 \hat{\imath}-3 \hat{\jmath}+7 \hat{k} \quad \vec{v}=-\hat{\imath}+\hat{\jmath}$
2) Find a vector perpendicular to each of the following pairs of vectors. Use the dot product to check your answer.
a) $[5,0,1]$ and $[-2,5,8]$
b) $[1,4,-2]$ and $[-4,9,0]$
3) Find a unit vector perpendicular to $\vec{a}=[6,-2,-3]$ and $\vec{b}=[5,1,-4]$.
4) Given $\vec{a}=[1,-2,-1], \vec{b}=[2,2,-1]$ and $\vec{c}=[2,-3,-4]$, evaluate each of the following:
a) $\vec{a} \times(\vec{b} \times \vec{c})$
b) $(\vec{a} \times \vec{b}) \times \vec{c}$
f) $(\vec{a} \times \vec{b}) \cdot \vec{c}$

$$
\text { g) }|\vec{a} \times \vec{b}|
$$

h) $|\vec{a} \times(\vec{b}-\vec{c})|$
5) Use the cross product to determine the angles between the vectors $\vec{a}=[2,1,-3]$ and $\vec{b}=[5,-4,3]$. Consider ambiguous case. Use dot product to confirm or use graphing software to inspect.
6) Determine the area of $\triangle P Q R$ with vertices of $P(3,-2,7), Q(2,2,-3)$, and $R(1,1,2)$.
7) Determine the area of the parallelogram $A B C D$ defined by the vertices $A(2,-1,-1), B(-4,-2,3), C(2,3,2)$, and $D(8,4,-2)$.

```
ANSWER KEY:
```



```
2)a) [-5, -42, 25] b) [18, 8, 25]
3) }\frac{1}{\sqrt{}{458}}[11,9,16
4)a) [26, 21, -16] b) [22, 28, -10] c) [1, 3, -5] d) [-33, 18, -30] e) 13 f) -13 g) \sqrt{}{53}}\mathrm{ h) }\sqrt{}{35
5) 96.5
6) 2.5 \sqrt{}{14}\mp@subsup{\mathrm{ units }}{}{2}
7) }\sqrt{}{1261}\mp@subsup{\mathrm{ units}}{}{2
```

' Jensen

1) Given $\vec{a}=[2,4,-5], \vec{b}=[-1,3,7]$, and $\vec{c}=[-2,7,3]$, evaluate each expression.
a) $\vec{a} \times \vec{b} \cdot \vec{c}$
b) $\vec{a} \times \vec{c} \cdot \vec{b}$
2) Determine the projection, and its magnitude of \vec{u} on \vec{v}.
a) $\vec{u}=[2,1,7], \vec{v}=[-7,2,6]$
b) $\vec{u}=7 \hat{\imath}-6 \hat{\jmath}+5 \hat{k}, \vec{v}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$
3) Determine the work done in the direction of travel.
a) $\vec{F}=[200,150,75], \vec{s}=[2,-1,8]$
b) $\vec{F}=-3 \hat{\imath}+9 \hat{\jmath}+5 \hat{k}, \vec{s}=2 \hat{\imath}+5 \hat{\jmath}+3 \hat{k}$
4) Find the area of the parallelogram with sides consisting of the vectors.
a) $\vec{a}=[-4,5,-8], \vec{b}=[1,-2,3]$
b) $\vec{a}=[9,-5,7], \vec{b}=[3,-2,5]$
5) Find the area of the triangle with the given vertices.
a) $\mathrm{A}(0,2,4), \mathrm{B}(3,-2,1), \mathrm{C}(4,-2,5)$
b) $A(-2,4,5), B(1,4,2), C(7,4,9)$
6) Determine the volume of the parallelepiped determined by the vectors.
a) $\vec{a}=[2,5,-8], \vec{b}=[7,-2,3]$, and $\vec{c}=[8,2,-1]$
b) $\vec{a}=[1,-5,9], \vec{b}=[3,4,-7]$, and $\vec{c}=[1,0,2]$
7) Find the torque produced by a cyclist exerting a force of 85 N on the pedal in the position shown in the diagram, if the shaft of the petal is 11 cm long.

8) A woman pushes her baby stroller a distance of 1500 m by a force of 89 N applied at an angle of 35° to the roadway. Calculate the work done.
9) Determine the work done by gravity in causing a 45 kg child to slide down a 55 m slope, which has an angle of 47° to the horizontal.
10) A force of 75 N is applied to a wrench in a clockwise direction at 52° to the handle, 17 cm from the centre of the bolt.
a) Calculate the magnitude of the torque.
b) In what direction does the bolt move?

ANSWER KEY:

1. a) -119 b) 119
2. a) $\frac{30}{89}[-7,2,6] ; \frac{30}{\sqrt{89}}$ b) $\frac{38}{14}[3,-2,1] ; \frac{38}{\sqrt{14}}$
3. a) 850 J b) 54 J
4. a) $\sqrt{26}$ units 2 b) $\sqrt{706}$ units 2
5. a) $\frac{\sqrt{497}}{2}$ units $^{2} \quad$ b) $\frac{39}{2}$ units 2
6. a) 93 units 3 b) 37 units 3
7. $9.03 \mathrm{~N} \cdot \mathrm{~m}$
8. 109356.8 J
9. 17738.98 J
10. a) $10.05 \mathrm{~N} \bullet \mathrm{~m}$ b) The bolt is being tightened into the material
