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Name: 



Unit 2 Outline 
 
Unit Goal: Make connections, graphically and algebraically, between the key features of a function and its first 

and second derivatives, and use the connections in curve sketching. 

 

 
 

Section Subject Learning Goals 
Curriculum 

Expectations 

L1 
Increasing and 

Decreasing 
- use the first derivative to determine when a function is increasing or 
decreasing 

A2.1 

L2 Max and Min 
- use the first derivative test to see if a critical point is a max, min, or 
neither 

A2.1 

L3 
Second Derivative and 

Concavity 
- Use the second derivative to find intervals of concavity and points of 
inflection 

B1.1,1.2,B1.4 

L4 Rational Functions 
- Sketch the graph of rational functions using critical points and 
knowledge of asymptotes 

 
B1.3 

L5 Curve Sketching 
- Sketch the graph of various polynomial and rational functions using 
the algorithm for curve sketching 

 
B1.5 

L6 Optimization 
- solve optimization problems using mathematical models and 
derivatives 

 
B2.4, B2.5 

 
 

Assessments F/A/O Ministry Code P/O/C KTAC 

Note Completion A  P  

Practice Worksheet Completion F/A  P  

Quiz – Curve Sketching F  P  
PreTest Review F/A  P  

Test – Curve Sketching 
O A2.1, B1.1-B1.5, B2.4, B2.5 P 

K(25%), T(25%), A(25%), 
C(25%) 

 
 
 
 



f(x)f'(x)

L1 – Increasing / Decreasing                 Unit 2 
MCV4U 
Jensen 
 
 
Increasing: As 𝑥-values increase, 𝑦-values are increasing 
 
Decreasing: As 𝑥-values increase, 𝑦-values are decreasing 
 
 
 
Part 1: Discovery 
 

𝑓(𝑥) =
1

3
𝑥3 + 𝑥2 − 3𝑥 − 4 

 
𝑓′(𝑥) = 𝑥2 + 2𝑥 − 3 
 
 
 
 
 
 
 
 
 
 
a) Over which values of 𝑥 is 𝑓(𝑥) increasing? 
 
𝑥 < −3 and 𝑥 > 1 
 
b) Over which values of 𝑥 is 𝑓(𝑥) decreasing? 
 
−3 < 𝑥 < 1 
 
c) What is true about the graph of 𝑓′(𝑥) when 𝑓(𝑥) is increasing? 
 
𝑓′(𝑥) > 0; it is above the 𝑥-axis 
 
d) What is true about the graph of 𝑓′(𝑥) when 𝑓(𝑥) is decreasing? 
 
𝑓′(𝑥) < 0; it is below the 𝑥-axis 
 
 
 



Effects of 𝒇′(𝒙) on 𝒇(𝒙): When the graph of 𝑓′(𝑥) is positive, or above the 𝑥-axis, on an interval, then the 
function 𝑓(𝑥) increases over that interval. Similarly, when the graph of 𝑓′(𝑥) is negative, or below the 𝑥-axis, 
on an interval, then the function 𝑓(𝑥) decreases over that interval.  
 

 
If 𝑓′(𝑥) > 0 on an interval, 𝑓(𝑥) is increasing on that interval 

 
If 𝑓′(𝑥) < 0 on an interval, 𝑓(𝑥) is decreasing on that interval 

 
 
 
Part 2: Properties of graphs of 𝒇(𝒙) and 𝒇′(𝒙) 
 
A critical number is a value ′𝑎′ in the domain where 𝑓′(𝑎) = 0 or 𝑓′(𝑎) does not exist.  
 
A critical number could yield… 
 

 A local max A local min Neither Max/Min at Cusp 
𝑓(𝑥)  

 
 
 
 

 
 
 
 
 
 
 

  

𝑓′(𝑥)  
 
 
 
 
 

 
 
 
 
 
 
 

  

 𝑓(𝑥) has a local 
max 
 
𝑓′(𝑥) = 0 and 
changes from + to - 
 
 
 
 

𝑓(𝑥) has a local min 
 
𝑓′(𝑥) = 0 and 
changes from - to + 
 

No local max/min 
 
𝑓′(𝑥) = 0 but does 
not change signs 

𝑓(𝑥) has a local min 
 
𝑓′(𝑥) does not exist 
but changes from – 
to + 

 
 
Conclusion:  
 
Local extrema occur when the sign of the derivative CHANGES. If the sign of the derivative does not change, 
you do not have a local extrema.  
 



f(x)

f '(x)

A critical number of a function is a value of 𝑎 in the domain of the function where either 𝑓′(𝑎) = 0 or 𝑓′(𝑎) 
does not exist. If 𝑎 is a critical number, (𝑎, 𝑓(𝑎)) is a critical point. Critical points could be local extrema but 
not necessarily. You must test around the critical points to see if the derivative changes sign. This is called the 
‘First Derivative Test’. 
 
 
Example 1: Determine all local extrema for the function below using critical numbers and the first derivative 
test. State when the function is increasing or decreasing.  
 
𝑓(𝑥) = 2𝑥3 − 9𝑥2 − 24𝑥 − 10 
 
𝑓′(𝑥) = 6𝑥2 − 18𝑥 − 24 
 
0 = 6(𝑥2 − 3𝑥 − 4) 
 
0 = 6(𝑥 − 4)(𝑥 + 1) 
 
𝑥1 = 4      𝑥2 = −1 
 
 
Sign Chart: 
 
 
 

Test value for 𝑥 −2 0 5 

𝑓′(𝑥) 
 
+ 
 

 
− 
 

 
+ 
 

𝑓(𝑥) 

Increasing Decreasing Increasing 

    
 
 
 
Increasing: 𝑥 < −1 or 𝑥 > 4 
Decreasing: −1 < 𝑥 < 4 
 
Notice how we could use the graph of  
the derivative to verify our solution: 
 
 
 
  
 
 
 

−∞ ∞ −1 4 

Local max 
at (−1, 3) 

Local min at 
(4,−122) 

Critical Numbers: 𝑥1 = 4      𝑥2 = −1 
 
Critical Points: (4, −122) and (−1, 3) 
 
𝑓(4) = 2(4)3 − 9(4)2 − 24(4) − 10 = −122 
 
𝑓(−1) = 2(−1)3 − 9(−1)2 − 24(−1) − 10 = 3 
 



f '(x)

f(x)

f '(x)

f(x)

f '(x)

f(x)

Example 2: For each function, use the graph of 𝑓′(𝑥) to sketch a possible function 𝑓(𝑥). 
 
a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑓′(𝑥) is the constant function 𝑦 = −2. 
 
Therefore, 𝑓(𝑥) must be a linear function with a 
slope of −2 
 
The 𝑦-intercept could be anywhere. 

𝑓′(𝑥) is a linear function 
 
Therefore, 𝑓(𝑥) must be a quadratic function 
 
𝑓′(𝑥) > 0 when 𝑥 < 2 and 𝑓′(𝑥) < 0 when 𝑥 > 2 
 
Therefore, 𝑓(𝑥) is increasing when 𝑥 < 2 and 
decreasing when 𝑥 > 2 
 
𝑓′(𝑥) switching from + to – at 𝑥 = 2 
 
There must be a local max at 𝑓(2). 
 

𝑓′(𝑥) is a quadratic function 
 
Therefore, 𝑓(𝑥) must be a cubic function 
 
𝑓′(𝑥) > 0 when 𝑥 < 2 when 𝑥 > 2 
 
Therefore, 𝑓(𝑥) is increasing when 𝑥 < 2 and 
when 𝑥 > 2 
 
𝑓′(𝑥) does not switch signs on either side of 
 𝑥 = 2 
 
Therefore, there is no local min or max at 𝑓(2) but 
the tangent line would be horizontal at that point.  
 



f '(x)

f(x)

f(x)

d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3: Sketch a continuous function for each set of conditions 
 
a) 𝑓′(𝑥) > 0 when 𝑥 < 0, 𝑓′(𝑥) < 0 when 𝑥 > 0, 𝑓(0) = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑓′(𝑥) is a quadratic function 
 
Therefore, 𝑓(𝑥) must be a cubic function 
 
𝑓′(𝑥) > 0 when 𝑥 < 1 when 𝑥 > 5 
 
Therefore, 𝑓(𝑥) is increasing when 𝑥 < 1 and 
when 𝑥 > 5 
 
𝑓′(𝑥) < 0 when 1 < 𝑥 < 5  
 
Therefore, 𝑓(𝑥) is decreasing when 1 < 𝑥 < 5 
 
𝑓′(𝑥) switches signs on either side of 
 𝑥 = 1 (from + to -) and 𝑥 = 5 (from – to +) 
 
Therefore, there is a max at 𝑓(1) and a local min 
at 𝑓(5) 
 

𝑓(𝑥) is increasing when 𝑥 < 0 and 
decreasing when 𝑥 > 0. 
 
Therefore, there must be a local max 
at 𝑥 = 0. 
 
𝑓(0) = 4 



f(x)

b) 𝑓′(𝑥) > 0 when 𝑥 < −1 and when 𝑥 > 2, 𝑓′(𝑥) < 0 when −1 < 𝑥 < 2, 𝑓(0) = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4: The temperature of a person with a certain strain of flu can be approximated by the function 

𝑇(𝑑) = −
5

18
𝑑2 +

15

9
𝑑 + 37, where 0 < 𝑑 < 6; 𝑇 represents the person’s temperature, in degrees Celsius and 

𝑑 is the number of days after the person first shows symptoms. During what interval will the person’s 
temperature be increasing? 
 

𝑇′(𝑑) = −
5

9
𝑑 +

15

9
 

 
Find critical numbers: 
 

0 = −
5

9
𝑑 +

15

9
 

 
5

9
𝑑 =

15

9
 

 
5𝑑 = 15 
 
𝑑 = 3 is a critical number 
 
 
 
Therefore, a person’s temperature will be increasing over the first 3 days. 
 
 
 
 
 

Test value for 𝑥 1 4 

𝑇′(𝑑) 
 
+ 
 

 
− 
 

𝑇(𝑑) 

Increasing Decreasing 

   

𝑓(𝑥) is increasing when 𝑥 < −1 and 
when 𝑥 > 2. 
 
𝑓(𝑥) is decreasing when −1 < 𝑥 < 2. 
 
 
Therefore, there must be a local max at 
𝑥 = −1 and a local min at 𝑥 = 2. 
 
𝑓(0) = 0 

0 6 3 



L2 – Maxima and Minima                     Unit 2 
MCV4U 
Jensen 
 
 
Part 1: Review 
 
Determine all local extrema for the function below using critical numbers and the first derivative test. State 
when the function is increasing and decreasing.  
 
𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 36𝑥 + 5 
 
𝑓′(𝑥) = 6𝑥2 + 6𝑥 − 36 
 
0 = 6(𝑥2 + 𝑥 − 6) 
 
0 = 6(𝑥 + 3)(𝑥 − 2) 
 
𝑥 = −3    and    𝑥 = 2    are critical numbers 
 
Critical points: 
 
𝑓(−3) = 2(−3)3 + 3(−3)2 − 36(−3) + 5 = 86  (−3, 86)  
 
𝑓(2) = 2(2)3 + 3(2)2 − 36(2) + 5 = −39   (2, −39)  
 
 
 

Test value for 𝑥 −4 0 3 

𝑓′(𝑥) 
 

+ 
 

 
− 
 

 
+ 
 

𝑓(𝑥) 

Increasing Decreasing Increasing 

    
 
 
 
 
 
Interval of increasing: (−∞, −3) ∪ (2, ∞) 
 
Interval of decreasing: (−3, 2) 
 
 
 

Remember: Local extrema 
occur when the sign of the 
derivative CHANGES. If the 
sign of the derivative does 
not change, you have 
neither local extrema.  

−∞ ∞ −3 2 

Local max 
at (−3, 86) 

Local min at 
(2, −39) 



Part 2: Local vs Absolute Extrema 
 
Local max or min values of a function are also called local extrema, or turning points.  
 
Local max: If the 𝑦-coordinate of all points in the vicinity are less than the 𝑦-coordinate of the point. The sign 
of the derivative would change from positive before the point, to zero at the point, to negative after. 
 
Local min: If the 𝑦-coordinate of all points in the vicinity are greater than the 𝑦-coordinate of the point. The 
sign of the derivative would change from negative before the point, to zero at the point, to positive after. 
 
Absolute max/min: A function 𝑓(𝑥) has an ABSOLUTE max or min at point 𝑎 if 𝑓(𝑎) is the biggest or smallest 
value of 𝑓(𝑥) for ALL 𝑥 in the domain.  
 
Example 1: Consider the graph of a function on the interval [0, 10]. 
 
a) Identify the local maximum points. 
 
B and D 
 
b) Identify the local minimum points. 
 
C 
 
c) What do all the points identified in parts a) and b) have in 
common? 
 
They each would have horizontal tangent lines. 
 
d) Identify the absolute max and min points in the interval 
[0,10] 
 
Absolute max is at D 
 
Absolute min is at A 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reminder: A critical number of a function is a value of 𝑎 in the domain of the function where either 𝑓′(𝑎) = 0 
or 𝑓′(𝑎) does not exist. If 𝑎 is a critical number, (𝑎, 𝑓(𝑎)) is a critical point.  

A

E

D

C

B



 
Scenarios for critical numbers: 
 
 
       1)  𝑓′(𝑎) = 0   2) 𝑓′(𝑎) = 0   3) 𝑓′(𝑎) does not exist 
       Local extrema at (𝑎, 𝑓(𝑎))  No local extrema at (𝑎, 𝑓(𝑎)) local extrema at (𝑎, 𝑓(𝑎)) (cusp) 

        𝑓(𝑥) = 𝑥2 − 6𝑥 + 8   𝑓(𝑥) = 𝑥3 + 2   𝑓(𝑥) = 𝑥
2

3 
 
 
 
 
 
 
 
 
 
 
 
4) 𝑓′(𝑎) does not exist    𝟓) 𝒇′(𝒂) does not exist 
No local extrema at (𝑎, 𝑓(𝑎))   No local extrema 

𝑓(𝑥) = 𝑥
1

3     𝑓(𝑎) does not exist either, therefore 𝑎 is NOT a critical number 
 

𝑓(𝑥) =
1

𝑥
   

 
 
 
 
 
 
 
To determine the absolute extrema values of a function on an interval, find the critical numbers, then 
substitute the critical numbers and also the 𝑥-coordinates of the endpoints of the interval into the function. 
 
 
Example 2: Find the absolute max and min of the function 𝑓(𝑥) = 𝑥3 − 12𝑥 − 3 on the interval −3 ≤ 𝑥 ≤ 4. 
 
𝑓′(𝑥) = 3𝑥2 − 12 
 
0 = 3(𝑥2 − 4) 
 
0 = 3(𝑥 − 2)(𝑥 + 2) 
 
𝑥 = 2 and 𝑥 = −2 are critical numbers 
 
𝑓(−3) = (−3)3 − 12(−3) − 3 = 6  
 
𝑓(−2) = 13 
𝑓(2) = −19 
𝑓(4) = 13 
 

Test critical numbers 
AND endpoints of 
interval. 

 
Absolute min: (2, −19) 
 
Absolute max: (−2, 13) and 
(4, 13) 
 



Example 3: The surface area of a cylindrical container is to be 100 𝑐𝑚2. Its volume is given by the function 
𝑉(𝑟) = 50𝑟 − 𝜋𝑟3, where 𝑟 is the radius of the cylinder in cm. Find the max volume of the cylinder if the 
radius cannot exceed 3 cm.  
 
𝑉′(𝑟) = 50 − 3𝜋𝑟2 
 
Find any critical numbers: 
 
0 = 50 − 3𝜋𝑟2 
 
3𝜋𝑟2 = 50 
 

𝑟 = √
50

3𝜋
  is a critical number 

 
 
 
Therefore, the max volume of the cylinder is about 76.8 cm3 when the radius is about 2.3 cm. 
 
 
 
 

Test endpoints of interval and critical number to find absolute 
max 
 
𝑉(0) = 0 cm3 
 

𝑉 (√
50

3𝜋
) = 76.8 cm3 

 
𝑉(3) = 65.2 cm3 
 



L3 – Concavity and the Second Derivative                   Unit 2 
MCV4U 
Jensen 
 
The second derivative is the derivative of the first derivative. It is the rate of change of the slope of the 
tangent.  
 
Part 1: Discovery 
 
Example 1:  
 
a) Given the graph of 𝑓(𝑥) = 𝑥4 − 2𝑥3 − 5 
 
𝑓′(𝑥) = 4𝑥3 − 6𝑥2 
 
𝑓′′(𝑥) = 12𝑥2 − 12𝑥 
 
When is 𝑓′′(𝑥) = 0 ? 
 
0 = 12𝑥2 − 12𝑥 
 
0 = 12𝑥(𝑥 − 1) 
 
𝑥 = 0    or   𝑥 = 1 
 
 
 
 
b) Use your pencil to simulate a tangent line to the function when 𝑥 = −1. Drag the pencil slowly to the right, 
keeping it tangent to the curve, approaching 𝑥 = 0. What is happening to the slope of the tangent? Is it above 
or below the curve? What is the value of 𝑓′′(−0.5)? 
 

• The curve is above the tangent line.  

• The tangent line slopes are increasing. 

• 𝑓′′(−0.5) = 9; it’s positive 
 
c) Drag the pencil slowly to the right, keeping it tangent to the curve, moving through 𝑥 = 0. What is 
happening to the slope of the tangent as it moves through 𝑥 = 0? What is the value of 𝑓′′(0.5)? 
 

• The slope of the tangent stops increasing and starts decreasing. 

• The curve goes from above the tangent line to below the tangent line.  

• 𝑓′′(0.5) = −3; it’s negative 
 
d) What happens to the slope of the tangent as it moves through 𝑥 = 1? 
 

• The slope of the tangent stops decreasing and starts increasing. 

• The curve goes from below the tangent line to above the tangent line.  
 



Summary of findings: 
 
How 𝑓′′(𝑥) effects 𝑓(𝑥):  
 
The graph of a function is concave up over an interval if the curve is above all of the tangents on the interval. 
The slopes of the tangent lines are increasing, therefore 𝑓′′(𝑥) > 0 over this interval.  
 
The graph of a function is concave down over an interval if the curve is below all of the tangents on the 
interval.  The slopes of the tangent lines are decreasing, therefore 𝑓′′(𝑥) < 0 over this interval.  
 
𝑓(𝑥) is concave UP on an interval if 𝑓′′(𝑥) > 0 over that interval (tangent line slopes are increasing) 
 
𝑓(𝑥) is concave DOWN on an interval if 𝑓′′(𝑥) < 0 over that interval (tangent line slopes are decreasing) 
 
 
 
 
A POINT OF INFLECTION is a point in the domain of the 
function at which the graph changes from being concave up 
to concave down or vice versa. The second derivative, 𝑓′′(𝑥), 
is equal to zero at this point (or is undefined) and changes 
sign on either side. The tangent lines change from increasing 
to decreasing OR from decreasing to increasing.  
 
 
 
 
However, just like that not every critical point is a local max / min, not every zero or restriction of the second 
derivative is an inflection point either.  They are just the pool of points you need to check in order to find the 
inflection point(s) of a curve. 
         
          
𝑓(𝑥) = 𝑥4 
   
 
 
 
 
 
 

Point of inflection

Concave DOWN

Concave UP

𝑓′′(𝑥) = 12𝑥2 
 
𝑓′′(0) = 0 
 
But 𝑥 = 0 is not a point of inflection; the 
function has no change in concavity. 
Tangent slopes are always increasing. 



 
 
 
 
Note: It often happens that a graph has different concavity on the two 
sides of a vertical asymptote.  However, because a curve is not continuous 
at a vertical asymptote, it can never have an inflection point there. We will 
look at these types of functions next lesson (rational functions). 
 
 
 
 
 
 
 
The second derivative test can also be used to help check for local min/max points.  
 
In the second derivative test we check the critical points themselves (those where 𝑓′(𝑥) = 0), by evaluating 
𝑓″(𝑥) AT each critical point. 
 
 
If 𝑓′(𝑐) = 0 and 𝑓″(𝑐) > 0, then 𝑓 has a local minimum at c. 

If 𝑓′(𝑐) = 0 and 𝑓″(𝑐) < 0, then 𝑓 has a local maximum at c. 

 
 
Note: Even though it is often easier to use than the first derivative test, the second derivative test can fail at 
some points (eg. 𝑦 = 𝑥4). If the second derivative test fails, then the first derivative test must be used to 
classify the point in question. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



f(x)>0

f(x)<0

f(x)=0

f '(x)=0

f '(x)=0

f 
'(

x)
>

0

f '(x)<
0 f 

'(
x)

>
0

f ''(x)=0

f ''(x)<0

f ''(x)>0

Summary Page of what we know so far 
 

Relationship between 𝒇(𝒙), 𝒇′(𝒙), and 𝒇′′(𝒙) 
 

𝑓(𝑥) = 0 Zeros (𝑥-intercepts) of the function  

𝑓(𝑥) > 0 Function is positive (above 𝑥-axis) 

𝑓(𝑥) < 0 Function is negative (below 𝑥-axis) 

 

 

 
 

Tests of Critical Numbers: 
 

Absolute Extrema on an Interval [𝑎, 𝑏] 1. Find CN 𝑥 = 𝑐, at 𝑓′(𝑥) = 0 or undefined 
2. Check endpoints and critical numbers; 𝑓(𝑎), 𝑓(𝑐), 𝑓(𝑏) 
3. Choose the minimum and maximum values 

Local Extrema – First Derivative Test 
of Critical Numbers 

1. Find CN 𝑥 = 𝑐, at 𝑓′(𝑥) = 0 or undefined 
2. Make a sign chart for 𝑓′(𝑥). Use test values.  
3. Draw conclusions about 𝑓(𝑥) 
       - If 𝑓(𝑥) changes from increasing to decreasing, (𝑐, 𝑓(𝑐)) is a local max 
       - If 𝑓(𝑥) changes from decreasing to increasing, (𝑐, 𝑓(𝑐)) is a local min 
 

Local Extrema – Second Derivative 
Test of Critical Numbers 

1. Find CN 𝑥 = 𝑐, at 𝑓′(𝑥) = 0 or undefined 
2. Calculate the second derivative 𝑓′′(𝑥) 
3. Test the critical numbers in 𝑓′′(𝑥) 
        - if 𝑓′′(𝑐) > 0, 𝑓(𝑥) is concave up and (𝑐, 𝑓(𝑐)) is a local min 
        - if 𝑓′′(𝑐) < 0, 𝑓(𝑥) is concave down and (𝑐, 𝑓(𝑐)) is a local max 
        - if 𝑓′′(𝑐) = 0, the test fails and you must use the First Derivative Test 

𝑓′(𝑥) = 0 Horizontal tangent; possible local 
extrema (turning point) 

 

𝑓′(𝑥) > 0 𝑓(𝑥) is increasing 

𝑓′(𝑥) < 0 𝑓(𝑥) is decreasing 

𝑓′′(𝑥) = 0 Possible point of inflection (change in 
concavity)  

 

𝑓′′(𝑥) > 0 𝑓(𝑥) is concave up 

𝑓′′(𝑥) < 0 𝑓(𝑥) is concave down 



Example 2: For the function 𝑓(𝑥) = 𝑥4 − 6𝑥2 − 5, find all points of inflection (POI) and the intervals of 
concavity. 
 
𝑓′(𝑥) = 4𝑥3 − 12𝑥 
 
𝑓′′(𝑥) = 12𝑥2 − 12 
 
0 = 12𝑥2 − 12 
 
0 = 12(𝑥2 − 1) 
 
0 = 12(𝑥 − 1)(𝑥 + 1) 
 
𝑥1 = 1   𝑥2 = −1  
 
 
 
Sign Chart: 
 
 

Test value for 𝑥 −2 0 2 

𝑓′′(𝑥) 
 
+ 
 

 
− 
 

 
+ 
 

𝑓(𝑥) 

Concave UP Concave DOWN Concave UP 

    
 
 
 
 
 
 
 
Concave up: (−∞,−1) ∪ (1,∞) 
 
Concave down: (−1, 1) 
 
 
 
 
 
 
 
 
 

−∞ ∞ −1 1 

POI at 
(−1,−10) 

POI at 
(1,−10) 

Possible points of inflection: 
 
𝑓(1) = (1)4 − 6(1)2 − 5 = −10 
 
𝑓(−1) = (−1)4 − 6(−1)2 − 5 = −10 
 
Use sign chart to check if there are 
changes of concavity on either side of 
these points.  



Example 3: For the function below, find the critical points. Then, classify them using the second derivative 
test.  
 
𝑔(𝑥) = 𝑥3 − 3𝑥2 + 2 
 
𝑔′(𝑥) = 3𝑥2 − 6𝑥 
 
0 = 3𝑥2 − 6𝑥 
 
0 = 3𝑥(𝑥 − 2) 
 
𝑥 = 0  and  𝑥 = 2 are critical numbers 
 
 
Second derivative test: 
 
𝑔′′(𝑥) = 6𝑥 − 6 
 

 𝑥 = 0 𝑥 = 2 
𝑔′′(𝑥) − + 

𝑔(𝑥) 

Concave DOWN 
 

Concave UP 
 
 
 
 

 (0, 2) is a local MAX (2,−2) is a local MIN 

 
 
 
Example 4: Sketch a graph of a function that satisfies each set of conditions. 
 
a) 𝑓′′(𝑥) = −2 for all 𝑥, 𝑓′(−3) = 0, 𝑓(−3) = 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Critical points: (0, 2) and (2,−2) 
 
𝑔(0) = 2    
 
𝑔(2) = −2    
 

𝑓′′(𝑥) = −2 for all 𝑥 tells us that the 
function is always concave down. 
 
𝑓′(−3) = 0 means indicates there is a 
local max at (−3, 9) 



b) 𝑓′′(𝑥) < 0 when 𝑥 < −1, 𝑓′′(𝑥) > 0 when 𝑥 > −1, 𝑓′(−3) = 0, 𝑓′(1) = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

𝑓(𝑥) is concave down when 𝑥 < −1 
 
𝑓(𝑥) is concave up when 𝑥 > −1 
 
Local max at 𝑥 = −3 
 
Local min at 𝑥 = 1 



L4 – Rational Functions                   Unit 2 
MCV4U 
Jensen 
 
 
Part 1: Warm-Up 
 

Find the intervals of concavity and the coordinates of any points of inflection for 𝑦 =
1

3
𝑥3 − 12𝑥2 + 5 

 
𝑦′ = 𝑥2 − 24𝑥 
 
𝑦′′ = 2𝑥 − 24 
 
0 = 2(𝑥 − 12) 
 
𝑥 = 12 
 
Possible point of inflection: 
 

𝑦 =
1

3
(12)3 − 12(12)2 + 5 = −1147 

 
(12,−1147) is a possible point of inflection 
 
 

Test value for 𝑥 11 13 

𝑦′′ 
 
− 
 

 
+ 
 

𝑦 

Concave DOWN Concave UP 

   
 
 
Concave up: (12,∞) 
 
Concave down: (−∞,12) 
 
 
 
 
 
 
 
 
 

Remember: 
 
𝑓′′(𝑥) = 0 or undefined is a possible POI 
 
If 𝑓′′(𝑥) < 0, 𝑓(𝑥) is concave DOWN 
 
If 𝑓′′(𝑥) > 0, 𝑓(𝑥) is concave UP 

 

−∞ ∞ 12 

POI at 
(12,−1147) 



Part 2: Reminder of some simple rational functions 
 

Degree of denominator > degree of numerator: 
 

𝑦 =
1

𝑥−2
     𝑦 =

1

𝑥2−4
    𝑦 =

1

(𝑥−1)2
     

 
 

 
 
 
 
 
 
 
 
Notice: Horizontal asymptotes all are at 𝑦 = 0 
 Vertical asymptotes are at zeros of the denominator 
 
 
Degree of denominator = degree of numerator: 
 

𝑦 =
3𝑥−2

𝑥−1
       Notice: HA at quotient of leading coefficients 

VA at zero of the denominator 
 
 
 
 
 
 
 
 
 
 
Degree of denominator < degree of numerator: 
 

𝑦 =
𝑥2−1

𝑥+3
  Notice: Oblique asymptote at quotient of numerator and 

denominator; VA at zero of the denominator 
 
 
 
 
 
 
 
 
 
 
 



Vertical Asymptote vs. Hole in Graph 
 

𝑓(𝑥) =
(𝑥−2)

(𝑥−1)(𝑥−2)
     Notice: VA at 𝑥 = 1; 𝑓(1) =

−1

0
 

 

       Hole at (2, 1); 𝑓(2) =
0

0
  

 
       (remove discontinuity to find 𝑦-value of hole) 
 
 

       Conclusion: If 𝑓(𝑎) =
#

0
, 𝑥 = 𝑎 is a VA   

              If 𝑓(𝑎) =
0

0
, there is a hole in the graph when 𝑥 = 𝑎 

 
 
 
 
Limit Definition of Asymptotes: 
 

For the rational function 𝑦 =
𝑓(𝑥)

𝑔(𝑥)
 

 

There is a Vertical Asymptote at 𝑥 = 𝑎 when 𝑔(𝑎) = 0 and lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= ±∞  

 
 

There is a Horizontal Asymptote at 𝑦 = 𝐿 when lim
𝑥→±∞

𝑓(𝑥)

𝑔(𝑥)
= 𝐿 

 
Note: Horizontal asymptote only exists if the degree of the numerator is less than or equal to the degree of 
the denominator.  
 
 
Part 3: Apply What You Know to Graph Rational Functions 
 
Example 1: State the Horizontal Asymptotes of the following functions: 
 

a) 𝑦 =
3𝑥2+2

6𝑥2−4𝑥−1
        

 

HA: 𝑦 =
3

6
=

1

2
 

 
 
 
 
 
 
 
 
 

b) 𝑦 =
3𝑥2+2

6𝑥3−4𝑥−1
 

 
HA: 𝑦 = 0 



Example 2: Consider the function 𝑓(𝑥) =
1

(𝑥+2)(𝑥−3)
 

 
a) Find the asymptotes 
 
HA: 𝑦 = 0 
 
VA: 𝑥 = −2  and 𝑥 = 3 
 
 
b) Find the one-sided limits as the 𝑥-values approach the vertical asymptotes (sub values very close to the 
limit for 𝑥, and find what the value of the function is approaching) 
 

lim
𝑥→−2−

1

(𝑥 + 2)(𝑥 − 3)
= ∞ 

 
Test: 𝑓(−2.00001) = 19999.96; therefore going towards +∞ 
 
 

lim
𝑥→−2+

1

(𝑥 + 2)(𝑥 − 3)
= −∞ 

 
Test: 𝑓(−1.9999) = −2000.04; therefore going towards −∞ 
 
 

lim
𝑥→3−

1

(𝑥 + 2)(𝑥 − 3)
= −∞ 

 
Test: 𝑓(2.9999) = −2000.04; therefore going towards −∞ 
 
 

lim
𝑥→3+

1

(𝑥 + 2)(𝑥 − 3)
= ∞ 

 
Test: 𝑓(3.00001) = 19999.96; therefore going towards +∞ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



c) Sketch the graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 3: Consider the function 𝑓(𝑥) =
1

𝑥2+1
 

 
a) Where are the vertical and horizontal asymptotes? 
 
HA: 𝑦 = 0 
VA: none       𝑥2 + 1 ≠ 0 
 
b) Find any local max/min points and the intervals of increase/decrease 
 

𝑓′(𝑥) =
0(𝑥2 + 1) − 2𝑥(1)

(𝑥2 + 1)2
 

 

𝑓′(𝑥) =
−2𝑥

(𝑥2 + 1)2
 

 
 
 
 
 
 
 
 
 
 
 

Find Critical Numbers: 
 

0 =
−2𝑥

(𝑥2 + 1)2
 

 
0 = −2𝑥 
 
𝑥 = 0 
 
𝑥 = 0 
 
Critical Point: (0,1) 
 
𝑓(0) = 1 
 



 
 
 

Test value for 𝑥 −1 1 

𝑓′(𝑥) 
 
+ 
 

 
− 
 

𝑓(𝑥) 

Increasing Decreasing 

   
 
 
 
Increasing: (−∞, 0) 
 
Decreasing: (0,∞) 
 
 
c) Find the points of inflection 
 
 

𝑓′(𝑥) =
−2𝑥

(𝑥2 + 1)2
 

 

𝑓′′(𝑥) =
−2(𝑥2 + 1)2 − 2(𝑥2 + 1)(2𝑥)(−2𝑥)

(𝑥2 + 1)4
 

 

𝑓′′(𝑥) =
−2(𝑥2 + 1) − 2(2𝑥)(−2𝑥)

(𝑥2 + 1)3
 

 

𝑓′′(𝑥) =
−2𝑥2 − 2 + 8𝑥2

(𝑥2 + 1)3
 

 

𝑓′′(𝑥) =
6𝑥2 − 2

(𝑥2 + 1)3
 

 
 
 
 
 
 
 
 
 
 

−∞ ∞ 0 

Local max 
at (0, 1) 

Find Possible POI’s: 
 

0 =
6𝑥2 − 2

(𝑥2 + 1)3
 

 
0 = 6𝑥2 − 2 
 

𝑥2 =
2

6
 

 

𝑥 = ±
1

√3
≅ 0.577 

 
(0.577,0.75) and  (−0.577,0.75) 
 
 



 
 
 

Test value for 𝑥 −1 0 1 

𝑓′′(𝑥) 
 
+ 
 

 
− 
 

 
+ 
 

𝑓(𝑥) 

Concave UP Concave DOWN Concave UP 

    
 
 
 
 
 
 
d) Sketch a graph of the function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−∞ ∞ −0.577 

POI at 
(−0.577,0.75) 

0.577 

POI at 
(0.577,0.75) 



L5 – Curve Sketching                  Unit 2 
MCV4U 
Jensen 
 
 
Algorithm for Curve Sketching 
 

1. Determine any restrictions in the domain. State any horizontal and vertical asymptotes or holes in the 
graph. 

2. Determine the intercepts of the graph 
3. Determine the critical numbers of the function (where is 𝑓′(𝑥) = 0 or undefined) 
4. Determine the possible points of inflection (where is 𝑓′′(𝑥)=0 or undefined) 
5. Create a sign chart that uses the critical numbers and possible points of inflection as dividing points.  
6. Use the sign chart to find intervals of increase/decrease and the intervals of concavity. Use all critical 

numbers, possible points of inflection, and vertical asymptotes as dividing points. 
7. Identify local extrema and points of inflection 
8. Sketch the function 

 
 
Example 1: Use the algorithm for curve sketching to analyze the key features of each of the following 
functions and to sketch a graph of them. 
 
a) 𝑔(𝑥) = 𝑥3 + 6𝑥2 + 9𝑥 
 
1. No restrictions on the domain; no asymptotes 
 
𝟐.   𝑥-intercepts: 
 
0 = 𝑥3 + 6𝑥2 + 9𝑥 
 
0 = 𝑥(𝑥2 + 6𝑥 + 9) 
 
0 = 𝑥(𝑥 + 3)2 
 
𝑥 = 0   or  𝑥 = −3  
 
(0, 0) and (−3, 0) are 𝑥-intercepts 
 
 
3. 𝑔′(𝑥) = 3𝑥2 + 12𝑥 + 9 
 
0 = 3(𝑥2 + 4𝑥 + 3) 
 
0 = 3(𝑥 + 3)(𝑥 + 1) 
 
Critical Numbers: 𝑥 = −3 and 𝑥 = −1 
 
Critical Points: (−3, 0) and (−1, −4) 
 

𝑦-intercept: 
 
𝑔(0) = 0 
 
(0, 0) is the 𝑦-intercept 



 
4. 𝑔′′(𝑥) = 6𝑥 + 12 
 
0 = 6(𝑥 + 2) 
 
𝑥 = −2 
 
(−2, −2) is a possible point of inflection 
 
 
5/6/7.  
 
 
 

Test value for 𝑥 −4 −2.5 −1.5 0 

𝑔′(𝑥) 
 

+ 
 

 
− 
 

 
− 
 

 
+ 
 

𝑔′′(𝑥) 
 

− 
 

 
− 
 

 
+ 
 

 
+ 
 

𝑔(𝑥) 

Concave Down 
Increasing 

 
 
 

Concave Down 
Decreasing 

 
 
 
 

Concave UP 
Decreasing 

 
 
 
 

Concave UP 
Increasing 

 
 
 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 

−∞ ∞ −3 −1 −2 

Local max 
at (−3, 0) 

POI at 
(−2, −2) 

Local min 
at (−1, −4) 



 
8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 𝑓(𝑥) =
1

(𝑥+1)(𝑥−4)
=

1

𝑥2−3𝑥−4
 

 
1. VA: 𝑥 = −1  and 𝑥 = 4  (from restrictions on denominator) 
 
    HA: 𝑦 = 0  (degree in denominator is higher than degree in numerator) 
 
 
2. 𝑥-int: NONE 
 

   𝑦-int: 𝑓(0) =
1

(0+1)(0−4)
= −

1

4
        (0, −0.25) 

 
 

3. 𝑓′(𝑥) =
0(𝑥+1)(𝑥−4)−(2𝑥−3)(1)

(𝑥2−3𝑥−4)2  

 

𝑓′(𝑥) =
−2𝑥+3

(𝑥2−3𝑥−4)2
  

 
 
 
 
 
 
 
 
 
 
 

Check for zeros: 
 
0 = −2𝑥 + 3 
 

𝑥 =
3

2
= 1.5  

 
 
 

Check for restrictions: 
 
0 = (𝑥2 − 3𝑥 − 4)2 
 
0 = [(𝑥 − 4)(𝑥 + 1)]2 
 
𝑥 = 4  and 𝑥 = −1 
 
However, these are not in the domain of 
𝑓(𝑥), therefore are NOT critical numbers 



 

Critical Number:  𝑥 =
3

2
= 1.5  

 
Critical Point: 𝑓(1.5) = −0.16       (1.5, −0.16) 
 

4. 𝑓′′(𝑥) =
−2(𝑥2−3𝑥−4)

2
−2(𝑥2−3𝑥−4)(2𝑥−3)(−2𝑥+3)

(𝑥2−3𝑥−4)4  

 

𝑓′′(𝑥) =
(𝑥2 − 3𝑥 − 4)[−2(𝑥2 − 3𝑥 − 4) − 2(2𝑥 − 3)(−2𝑥 + 3)

(𝑥2 − 3𝑥 − 4)4
 

 

𝑓′′(𝑥) =
−2(𝑥2 − 3𝑥 − 4) − 2(2𝑥 − 3)(−2𝑥 + 3)

(𝑥2 − 3𝑥 − 4)3
 

 

𝑓′′(𝑥) =
−2𝑥2 + 6𝑥 + 8 − 2(−4𝑥2 + 12𝑥 − 9)

(𝑥2 − 3𝑥 − 4)3
 

 

𝑓′′(𝑥) =
−2𝑥2 + 6𝑥 + 8 + 8𝑥2 − 24𝑥 + 18

(𝑥2 − 3𝑥 − 4)3
 

 

𝑓′′(𝑥) =
6𝑥2 − 18𝑥 + 26

(𝑥2 − 3𝑥 − 4)3
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Possible changes in concavity at  𝑥 = −1  and  𝑥 = 4 but 𝑓(𝑥) is not defined at these values either, therefore 
they can NOT be considered points of inflection. 
 
 
 
 
 
 
 
 
 
 

Check for zeros: 
 
0 = 6𝑥2 − 18𝑥 + 26 
 
𝑏2 − 4𝑎𝑐 = (−18)2 − 4(6)(26) = −300 
 
𝑏2 − 4𝑎𝑐 < 0 therefore no real solutions 
 
𝑓(𝑥) has not points of inflection 
 
 

Check for restrictions: 
 
0 = (𝑥2 − 3𝑥 − 4)3 
 
0 = [(𝑥 − 4)(𝑥 + 1)]3 
 
𝑥 = 4  and 𝑥 = −1 



 
5/6/7.  
 
 
 

Test value for 𝑥 −2 0 2 5 

𝑓′(𝑥) 
 

+ 
 

 
+ 
 

 
− 
 

 
− 
 

𝑓′′(𝑥) 
 

+ 
 

 
− 
 

 
− 
 

 
+ 
 

𝑓(𝑥) 

Concave UP 
Increasing 

 
 
 
 
 
 

Concave DOWN 
Increasing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Concave DOWN 
Decreasing 

 
 
 
 

Concave UP 
Decreasing 

 
 
 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−∞ ∞ −1 4 1.5 

Local Max at 
(1.5, −0.16) 



8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) ℎ(𝑥) = 𝑥4 − 5𝑥3 + 𝑥2 + 21𝑥 − 18 
 
1. No restrictions; no asymptotes 
 
2. 𝑥-int: 
 
0 = 𝑥4 − 5𝑥3 + 𝑥2 + 21𝑥 − 18 
 
0 = (𝑥 − 1)(𝑥3 − 4𝑥2 − 3𝑥 + 18) 
 
 
 
0 = 𝑥4 − 5𝑥3 + 𝑥2 + 21𝑥 − 18 
 
0 = (𝑥 − 1)(𝑥3 − 4𝑥2 − 3𝑥 + 18) 
 
 
0 = (𝑥 − 1)(𝑥 + 2)(𝑥2 − 6𝑥 + 9) 
 
0 = (𝑥 − 1)(𝑥 + 2)(𝑥 − 3)2 
 
𝑥 = 1   𝑥 = −2    𝑥 = 3 
 
(1, 0), (−2,0) and (3,0) 
 
 
 
𝑦-int: ℎ(0) = −18    (0, −18) 

1 1 −5 1 21 −18 

  1 −4 −3 18 

 1 −4 −3 18 0 

−2 1 −4 −3 18 

  −2 12 −18 

 1 −6 9 0 

Factor: 𝑥4 − 5𝑥3 + 𝑥2 + 21𝑥 − 18 
 
Possible zeros: ±1, 2, 3, 4, 6, 9, 18 
 
ℎ(1) = 0; 𝑥 − 1 is a factor 

Factor: 𝑥3 − 4𝑥2 − 3𝑥 + 18 
 
Possible zeros: ±1, 2, 3, 4, 6, 9, 18 
 
ℎ(−2) = 0; 𝑥 + 2 is a factor 



3. ℎ′(𝑥) = 4𝑥3 − 15𝑥2 + 2𝑥 + 21 
 
0 = 4𝑥3 − 15𝑥2 + 2𝑥 + 21 
 
0 = (𝑥 + 1)(4𝑥2 − 19𝑥 + 21) 
 
0 = (𝑥 + 1)[4𝑥2 − 7𝑥 − 12𝑥 + 21] 
 
0 = (𝑥 + 1)[𝑥(4𝑥 − 7) − 3(4𝑥 − 7)] 
 
0 = (𝑥 + 1)(4𝑥 − 7)(𝑥 − 3) 
 
 

Critical Numbers: 𝑥 = −1,
7

4
, 3 

 
Critical Points: (−1, −32), (1.75,4.39), and (3, 0) 
 
 
4. ℎ′′(𝑥) = 12𝑥2 − 30𝑥 + 2 
 
0 = 2(6𝑥2 − 15𝑥 + 1) 
 
0 = 6𝑥2 − 15𝑥 + 1 
 

𝑥 =
15 ± √(−15)2 − 4(6)(1)

2(6)
 

 
 

𝑥 =
15 ± √201

12
 

 
𝑥 ≅ 2.43    and    𝑥 ≅ 0.07 
 
 
Possible points of inflection: (2.43, 2.05)  and   (0.07, −16.56) 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 4 −15 2 21 

  −4 19 −21 

 4 −19 21 0 

Factor: 4𝑥3 − 15𝑥2 + 2𝑥 + 21 
 

Possible zeros: ±1,
1

2
,

1

4
, 3,

3

2
,

3

4
, 7,

7

2
,

7

4
, 21,

21

2
,

21

4
 

 
ℎ′(−1) = 0; 𝑥 + 1 is a factor 



5/6/7. 
 
 

Test value 
for 𝑥 

−2 0 1 2 2.5 4 

ℎ′(𝑥) 
 

− 
 

 
+ 
 

 
+ 
 

 
− 
 

 
− 
 

 
+ 
 

ℎ′′(𝑥) 
 

+ 
 

 
+ 
 

 
− 
 

 
− 
 

 
+ 
 

 
+ 
 

ℎ(𝑥) 

Decreasing 
Concave UP 

 
 
 

Increasing 
Concave UP 

 
 
 
 

Increasing 
Concave 
DOWN 

 
 
 
 

Decreasing 
Concave 
DOWN 

 
 
 
 

Decreasing 
Concave UP 

 
 
 
 

Increasing  
Concave UP 

 
 
 
 

       
 
 
 
 
 
 
 

−∞ ∞ −1 2.43 1.75 

POI at 
(0.07, −16.56) 

Local max 
at
(1.75, 4.39) 

0.07 3 

Local min at 
(−1, −32) 

Local min at 
(3, 0) 

POI at 
(2.43, 2.05) 



L6 – Optimization Problems                Unit 2 
MCV4U 
Jensen 
 
 
Tips for Optimization Problems: 
 

• Diagrams can be helpful 
• Identify the independent variable and express all other variables in terms of it 
• Define a function in terms of the independent variable 
• Identify any restriction on the variable 
• Solve for 𝑓!(𝑥) = 0 to identify critical points 
• Check critical points and endpoints 

 
 
 
 
Optimization Warm Up: 
 
 A lifeguard has 200 meters of rope and some buoys with which she intends to enclose a rectangular area at a 
lake for swimming. The beach will form one side of the rectangle, with the rope forming the other 3 sides. Find 
the dimensions that will produce the maximum enclosed area. 
 
𝑤𝑖𝑑𝑡ℎ = 𝑥 
𝑙𝑒𝑛𝑔𝑡ℎ = 200 − 2𝑥 
 
𝐴 = (𝑙𝑒𝑛𝑔𝑡ℎ)(𝑤𝑖𝑑𝑡ℎ) 
𝐴 = 𝑥(200 − 2𝑥) 
𝐴 = 200𝑥 − 2𝑥" 
 
Note: The domain of this function is restricted to values 0 < 𝑥 < 100 
because there is only 200 meters of rope to use.  
 

To determine the max area, test endpoints of the interval as well as any critical numbers.  
 

Critical Number(s): 
 
𝐴!(𝑥) = 200 − 4𝑥 
0 = 200 − 4𝑥 
4𝑥 = 200 
𝑥 = 50 is a critical number 
 
Tests: 
 
𝐴(0) = 0[200 − 2(0)] 
𝐴(0) = 0 m2 
 
 
Therefore, the max area of 5000 m2 occurs when the width is 50m and the length is 100m.  
 

𝐴(50) = 50[200 − 2(50)] 
𝐴(50) = 5000 m2 

 

𝐴(100) = 100[200 − 2(100)] 
𝐴(100) = 0 m2 
 



x
x

h

Example 1: A cardboard box with a square base is to have a volume of 8 Liters (1 L = 1000 𝑐𝑚#) 
Find the dimensions that will minimize the amount of cardboard to be used. What is the minimum surface 
area? 
 
𝑆𝐴 = 2𝑥! + 4𝑥ℎ 
 
Express ℎ in terms of 𝑥 using the volume 
 equation 
 

𝑆𝐴 = 2𝑥! + 4𝑥 )
8000
𝑥! , 

 
𝑆𝐴 = 2𝑥! + 32000𝑥"# 
 
Find min value by finding zero(s) of the first derivative: 
 
𝑆𝐴$(𝑥) = 4𝑥 − 32000𝑥"! 
 
0 = 4𝑥 − 32000𝑥"! 
 
32000𝑥"! = 4𝑥 
 
32000 = 4𝑥% 
 
8000 = 𝑥% 
 
𝑥 = 20 cm 
 
Verify it is a min using the second derivative test: 
 
𝑆𝐴$$(𝑥) = 4 + 64000𝑥"% 
 
𝑆𝐴$$(20) = 4 + 64000(20)"% 
 
𝑆𝐴$$(20) = 12, therefore 𝑆𝐴 is concave up at 𝑥 = 20, and there is a local min point.  
 
Solve for ℎ when 𝑥 = 20: 
 

ℎ =
8000
(20)! 

 
ℎ = 20 
 
Find The minimum surface area: 
 
𝑆𝐴(20) = 2(20)! + 32000(20)"# 
 
𝑆𝐴(20) = 2400 cm3 

 
 
Therefore, a minimum surface area of 2400 cm3 can be obtained when the dimensions of the box are 20 by 20 by 20 cm.  
 
 

From Volume Equation: 
 
𝑉 = (𝑎𝑟𝑒𝑎	𝑜𝑓	𝑏𝑎𝑠𝑒)(ℎ𝑒𝑖𝑔ℎ𝑡) 
8000 = 𝑥!ℎ 

ℎ =
8000
𝑥!  

 



Example 2: A soup can of volume 500 cm3 is to be constructed. The material for the top costs 0.4¢/cm2 while 
the material for the bottom and sides costs 0.2¢/cm2. Find the dimensions that will minimize the cost of 
producing the can. What is the min cost? 
 
 
𝑆𝐴 = 2𝜋𝑟2 + 2𝜋𝑟ℎ 
 
𝑆𝐴 = 	𝜋𝑟2 + 𝜋𝑟2 + 2𝜋𝑟ℎ 
 

𝑆𝐴(𝑟) = 𝜋𝑟2 + 𝜋𝑟2 + 2𝜋𝑟 ?
500
𝜋𝑟2

@ 

 

𝑆𝐴(𝑟) = 𝜋𝑟2 + 𝜋𝑟2 +
1000
𝑟

 

 

𝐶(𝑟) = 0.4(𝜋𝑟2) + 0.2(𝜋𝑟2) + 0.2 ?
1000
𝑟
@ 

 

𝐶(𝑟) = 0.6𝜋𝑟2 +
200
𝑟

 

 

𝐶!(𝑟) = 1.2𝜋𝑟 −
200
𝑟2

 

 

0 = 1.2𝜋𝑟 −
200
𝑟2

 

 
200
𝑟! = 1.2𝜋𝑟 

 
200
1.2𝜋

= 𝑟# 

 

𝑟 = C200
1.2𝜋

!
 

 
𝑟 = 3.76	𝑐𝑚 
 
2nd Derivative Test 
 

𝐶!!(𝑟) = 1.2𝜋 +
400
𝑟3

 

 
𝐶!!(3.76) = 11.29; therefore at the point G3.76, 𝐶(3.76)I, 𝐶(𝑟) is concave up and the point is a MIN point. 
 
𝐶(3.76) = 79.84 cents 
 
A min cost of 79.84 cents can be obtained by using dimensions 𝑟 = 3.76 cm and ℎ = 500

𝜋(3.76)2
= 11.26 cm 

 
 

From Volume Equation: 
 
𝑉 = 𝜋𝑟!ℎ 
500 = 𝜋𝑟!ℎ 

ℎ =
500
𝜋𝑟!  

 



Example 3: Ian and Ada are both training for a marathon. Ian’s house is located 20 km north of Ada’s house. At 
9:00 am one Saturday, Ian leaves his house and jogs south at 8 km/h. At the same time, Ada leaves her house 
and jogs east at 6 km/h. When are Ian and Ada closest together, given that they both run for 2.5 hours? 
 
 
𝑠" = 𝐽𝐴" + 𝐴𝐵" 
 
𝑠 = O𝐽𝐴" + 𝐴𝐵" 
 
Express 𝑠 in terms of time (𝑡) 
 

𝐽𝐴 = 20 − 8𝑡 
 

𝐴𝐵 = 6𝑡 
 
𝑠 = O(20 − 8𝑡)" + (6𝑡)" 
 

𝑠 = [400 − 320𝑡 + 64𝑡" + 36𝑡"]
$
" 

 

𝑠 = (100𝑡" − 320𝑡 + 400)
$
" 

 
Find Critical Number(s): 
 

𝑠!(𝑡) =
1
2
(100𝑡" − 320𝑡 + 400)%

$
"(200𝑡 − 320) 

 

𝑠!(𝑡) =
200𝑡 − 320

2√100𝑡" − 320𝑡 + 400
 

 

𝑠!(𝑡) =
100𝑡 − 160

√100𝑡" − 320𝑡 + 400
 

 

0 =
100𝑡 − 160

√100𝑡" − 320𝑡 + 400
 

 
0 = 100𝑡 − 160 
 
160 = 100𝑡 
 
𝑡 = 1.6 
 
Check endpoints of interval and critical number to determine minimum value: 
 
𝑠(0) = O[20 − 8(0)]" + [6(0)]" = 20 
 
𝑠(1.6) = O[20 − 8(1.6)]" + [6(1.6)]" = 12 
 
𝑠(2.5) = O[20 − 8(2.5)]" + [6(2.5)]" = 15 

Therefore, the minimum distance 
between Ada and Ian occurs after 1.6 
hours (10:36 am). 




