Chapter 5 Exam Review - Probability Distributions

MDM4U

Jensen

Section 5.1 - Probability Distributions

1) What must be the value of P(4) if this is a valid probability distribution? Why?

X	P(X)
0	0.1
1	0.2
2	0.05
3	0.2
4	
5	0.1

2) Use the given frequency distribution to...

a) create a probability distribution for n, the number of dogs per household in a small town.

Dogs	Households
0	1500
1	430
2	175
3	52
4	16

n	P(n)

b) Determine the expected number of dogs in a home in the small town?

Section 5.2 - Hypergeometric Probability Distributions

- **3)** The door prizes at a dance are gift certificates from local merchants. There are four \$10 certificates, five \$20 certificates, and three \$50 certificates. The prize envelopes are mixed together in a bag and are drawn at random.
- **a)** Create a probability distribution for the number of \$50 prizes drawn, *n*, on the first three draws.

# of \$50 prizes drawn (n)	P(n)
0	
1	
2	
3	

b) What is the expected number of \$50 certificates among the first three prizes drawn?

c) What is the probability that at least 1 \$50 prize is drawn in the first three draws?

Section 5.3 - Binomial Distributions

- **4)** A family plans on having four children. Assuming the probability of having a boy is equal to the probability of having a girl...
- a) Create a probability distribution for the number of boys, X, the family will have

# of boys (X)	P(X)
0	
1	
2	
3	
4	

b) Find the expected number of boys in a family with four children

a) Create a probability distribution table for the number of baskets made in a quarter where he takes 4 shots.

Number of Baskets Made (X)	P(X)
0	
1	
2	
3	
4	

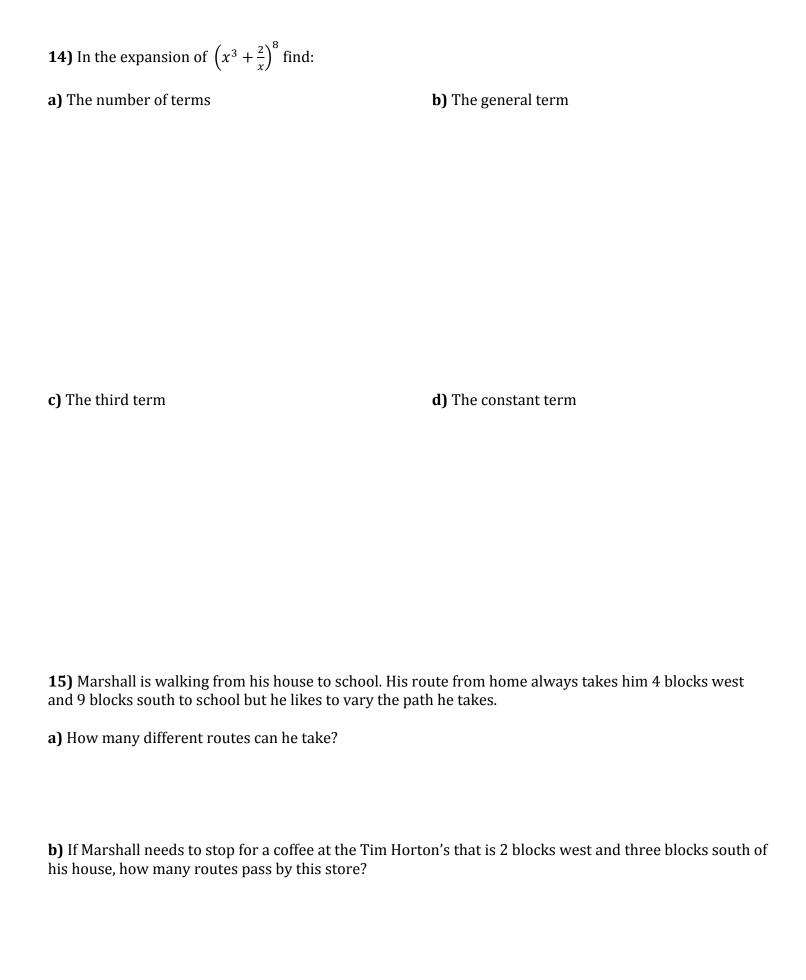
b)	What is the	expected	number	of baskets	made in	the quarter?
----	-------------	----------	--------	------------	---------	--------------

- **6)** The Choco-Latie Candies company makes candy-coated chocolates, 40% of which are red. The production line mixes the candies randomly and packages ten per box.
- a) Calculate the probability that exactly 5 of the candies in a box are red.
- $\boldsymbol{b)}$ Calculate the probability that fewer than 5 in a box are red.
- c) Calculate the probability that at least 3 of the candies in a box are red.

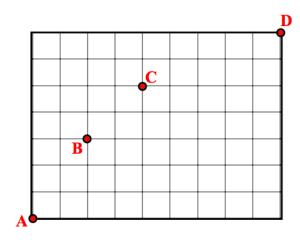
7) A certain type of rocket has a failure rate of 1.5%
a) Calculate the probability of there being exactly 1 failure in 100 launches. (answer to 6 decimal places)
b) Calculate the probability that there are more than 4 failures in 100 launches (answer to 6 decimal places)
c) What is the expected number of failures in 100 launches of the rocket?
8) Suppose that 65% of the families in a town own computers. If eight families are surveyed at random a) What is the probability exactly 3 own a computer?
b) What is the probability that all 8 own a computer?
c) What is the probability that 6 or fewer families own a computer
d) What is the expected number of families that will own a computer.

9) A recent survey of a gas-station's customers showed that 68% paid with credit cards, 29% used debit cards, and only 3% paid with cash. During her eight-hour shift as cashier at this gas station, Serena had a total of 223 customer. What is the probability that
a) at least 142 customers used a credit card?
b) fewer than 220 customers paid with credit or debit cards
Section 5.4 – Geometric Distributions
10) From experience, you know that the probability that you will make a sale on any given telephone call is 0.23. Find the probability
a) On any given day, your first sale won't be until your 5 th call.
b) It takes less than 4 calls to make a sale
c) It takes more than 10 calls to make a sale
11) Basketball player Shaquille O'Neal makes a free throw shot about 54% of the time. Find the probability
a) The first free throw he makes is his 3^{rd} free throw attempt
b) It takes him more than 5 attempts to make his first free throw

12) A cereal maker places a game piece in its cereal boxes. The probability of winning a prize in the game
is 1 in 4. Find the probability that


- a) You win your first prize with your fourth purchase
- **b)** It takes you fewer than 3 purchases to win a prize

Section 5.5 - Binomial Theorem


- **13)** Find the binomial expansion of each expression in simplified form using the binomial theorem.
- **a)** $(2x + 3)^4$

b) $(2x-1)^4$

c) $(3x - 2y)^5$

16) The grid below shows the streets in your neighbourhood.

a) How many different routes are there to get from A to D?

b) How many different routes from A to D pass by the point B on the way?

c) What is the probability that you pass C on your way from A to D?