Chapter 5 Review

Section 1: Direct and Partial Variation

Constant of variation =

 $\frac{\Delta dependent}{\Delta independent}$

1. Find the constant of variation for each direct variation.

a) The cost for a long-distance telephone call varies directly with time. A 12-min phone call cost \$0.96.

$$m = \frac{40.96}{12 \text{ min}} = 0.08 \text{ } \frac{4}{\text{min}}$$

b) The total mass of magazines varies directly with the number of magazines. The mass of 8 magazines is 3.6 kg.

c) The distance travelled varies directly with time. In 3 h, Alex drove 195 km.

2. The Jung family travels 300 km to a relative's home. The distance, *d*, in kilometres, varies directly with the time, *t*, in hours.

Equation of a direct variation is: y = mx

a) Find an equation relating d and t if d = 144 when t = 1.5. What does the constant of variation represent?

$$m = \frac{\Delta d}{\Delta t} = \frac{144}{1.5} = 96 \text{ km/h}$$
 (the constant of variotion represents)
$$d = 96t$$

b) Use the equation to determine how long it will take the Jungs to reach their destination.

$$300 = 96t$$

 $\frac{300}{96} = t$ It will take 3.1 hours.
 $t = 3.1$

3. Classify each of the following graphs as direct variation, partial variation, or neither.

Partial

Neither

Direct

4. The following table shows the Cost, *C*, to park in a downtown parking lot based on the number of hours, *t*, your car is parked for.

×	y
£ (h)	C (\$)
0	0
0.5	1.50
1	3.00
1.5	4.50
2	6.00
2.5	7.50

a) Is this an example of direct or partial variation?

Direct

b) What is the constant of variation?

$$M = \frac{\Delta y}{\Delta x} = \frac{3}{1} = 3$$

c) What does the constant of variation represent in this situation?

This represents the cost per how to park downtown.

d) Write an equation relating C and t

5. For the following table of values:

X	y
0	10
1	14
2	18
3	22
4	26

a) Is this an example of direct or partial variation?

b) What is the initial value?

c) What is an equation for this relation in the form

Equation of a partial variation:

$$y = mx + b$$

Section 2: Finding Slope from a Graph

6. Find the slope of each object/line:

b)

$$M = \frac{45}{32}$$

Remember:

 $m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$

7. Find the slope of each of the following lines

Slope of AB:

Slope of CD:

Slope of EF: $\frac{-3}{4}$

8.

a) Point A(-2,2) is plotted on the grid below. Draw line segment AB that has a slope of $-\frac{1}{2}$. Complete the table on the left with the coordinates of a point to the left and right of A.

b) Point C(1,-3) is plotted on the grid below. Draw line segment CD that has a slope of 2. Complete the table on the right with the coordinates of a point to the left and right of C.

X	у
6	-5
1	-3
2	

Section 3: Slope as a Rate of Change

$$Rate\ of\ change = slope = \frac{\Delta dependent}{\Delta independent}$$

9. At rest, Vicky takes 62 breaths every 5 min. What is Vicky's rate of change of number of breaths?

$$m = \frac{\Delta y}{\Delta x} = \frac{62 \text{ breaths}}{6 \text{ minus}} = 12.4 \text{ breaths/min}$$

10. When he is sleeping, Jeffrey's heart beats 768 times in 12 min. What is his rate of change of number of heartbeats?

$$m = \frac{\Delta y}{\Delta x} = \frac{768 \text{ keats}}{12 \text{ minutes}} = 64 \text{ keats/min}$$

11. The graph shows the speed of the cars on a roller coaster once the brakes are applied.

$$m = -\frac{16}{5}$$

$$= -3.6 \, \text{m/s}^{2}$$

b) Interpret the slope as a rate of change

 $slope = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$

Section 4: First Differences

12. Use first differences to determine if each relation is linear or non-linear

a)

t	d	
-1	21	1-6
0	13	2
1	9	2-4
2	7	>-6
3	6	>-1

non-linear

b)

x	y	
0	4	
1	11	
2	18	27
3	25	27
4	32	27

linear

Section 6: Writing Linear Equations

13. For the following table of values:

x	y
0	2
1	5
2	8
3	11
4	14

a) Calculate the slope (constant of variation)

$$M = \frac{\Delta y}{\Delta x} = \frac{5-2}{1-6} = \frac{3}{7} = 3$$

b) What is the y-intercept (initial value)

c) Write the equation of the linear relation

d) Graph the relation

14. For the following linear relation:

a) Calculate the slope

$$m = \frac{rise}{run}$$
 $= -3$

b) What is the y-intercept?

c) Write an equation for the line

$$y = \frac{3}{2}x + 1$$

- **15.** y varies directly with x. When x=3, y=5
- a) What is the slope of the line

$$M = \frac{\Delta y}{\Delta x} = \frac{5-0}{3-0} = \frac{5}{3}$$

b) What is the y-intercept (hint: what is the y-intercept of all direct variation relationships?)

c) Write an equation for the line

- **16.** y varies partially with x. When x = 0, y=1, and when x = 2, y=7.
- a) What is the slope of the line?

$$M = \frac{\Delta y}{\Delta x} = \frac{7-1}{2-0} = \frac{6}{2} = 3$$

$$slope = \frac{y_2 - y_1}{x_2 - x_1}$$

b) What is the y-intercept (what is the y-value when x=0?)

c) Write an equation for the line

17. A class is planning a field trip to an art gallery. The cost of renting a bus is \$250. There is an additional fee of \$4 per student. Write an equation to represent this linear relationship.

$$y = 4x + 250$$

Section 6: Graphing a Linear Relation

18. Graph each of the following lines on the grids provided.

a)
$$y = 3x - 2$$

c)
$$y = -\frac{1}{2}x$$

b)
$$y = -2x + 5$$

d)
$$y = \frac{3}{2}x - 3$$

	ζ.