Chapter 7

Geometric Relationships

Intro

Part 1: Classifying Triangles

Classifying Using Side Lengths

Scalene Triangle

- no equal sides or angles

Isosceles Triangle

- 2 equal sides
- 2 equal angles

Equilateral Triangle

- 3 equal sides
- 3 equal angles

Classifying Using Angle Measures

Acute Triangle
 - 3 acute angles (less than 90 degrees)

Right Triangle

- one right angle (90 degrees)

Obtuse Triangle

- one obtuse angle
(between 90 and 180 degrees)

Example 1

Classify Each Triangle Using its Side Lengths
a)

b)

Isosceles
2 equal sides
Scalene
No equal sides

Example 2

Classify Each Triangle in Two ways Using its Angle Measures
a)

b)

Equilateral (3 equal angles)
Isosceles (2 equal angles)

Acute (all angles <90)

Obtuse (1 angle > 90)

Part 2: Classifying Polygons

A polygon is a closed figure formed by three or more line segments.

A regular polygon has all sides equal and all angles equal.

Number of Sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon

Some quadrilaterals have special names.
A regular quadrilateral is a square.
square

An irregular quadrilateral may be a rectangle, rhombus, parallelogram, or trapezoid

Example 3

Classify each polygon according to its number of sides and whether it is regular or irregular.
a)

b)

Irregular Pentagon
Regular Hexagon

Example 4

Classify each quadrilateral.
a)

b)

Parallelogram

Part 3: Angle Properties

Opposite Angles:

- When 2 angles intersect, the opposite angles are equal.

Supplementary Angles:

- angles that add to 180 degrees
- angles on a straight line are
 supplementary

Complementary Angles:

- angles that add to 90 degrees

Part 4: Parallel Line Theorems

When a transversal crosses parallel lines, many pairs of angles are related..

Alternate Interior Angles are equal - Z pattern

Alternate Exterior Angles are equal

Corresponding Angles are equal - F pattern

Co-Interior Angles add to 180 - C pattern

Part 6: Triangle Theorems

The sum of the interior angles of a triangle is $\mathbf{1 8 0}$ degrees.

The exterior angle is equal to the sum of the 2 opposite interior angles.

Example 5
Find the measure of the third angle in each triangle...
a)

$$
\begin{aligned}
\angle Z & =180-58-72 \\
& =50^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
\angle R & =180-90-35 \\
& =55
\end{aligned}
$$

Example 6
Find the measure of the angles a, b, and c. Give reasons for your answers...
a)

$$
\begin{aligned}
& \angle a=75^{\circ} \quad \text { (opposite angle) } \\
& \angle c=75^{\circ} \quad \text { (alternate interior) } \\
& \angle b=75^{\circ} \text { (correspondin gangle) }
\end{aligned}
$$

b)

$\angle c=180-40=140^{\circ}$ (supplementary)
$\angle b=40^{\circ}$ (opposite angle)
$\angle a=180-\angle c=40^{\circ}$ (co-interior)

