Section 7.0 – Geometry Intro

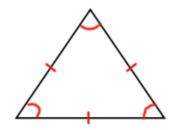
MPM1D Iensen

Part 1: Classifying Triangles

Classify Using Side Lengths:

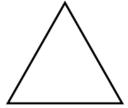
Scalene Triangle

- no equal sides or angles

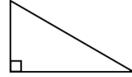

Isosceles Triangle

- 2 equal sides
- 2 equal angles

Equilateral Triangle


- 3 equal sides
- 3 equal angles

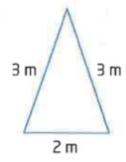
Classify Using Angle Measures:


Acute Triangle

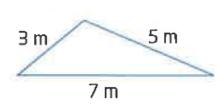
- 3 acute angles (less than 90 degrees)

Right Triangle

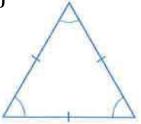
- one right angle (90 degrees)


Obtuse Triangle

- one obtuse angle (between 90 and 180 degrees)



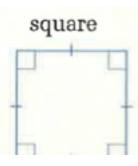
Example 1: Classify Each Triangle Using its Side Lengths



b)

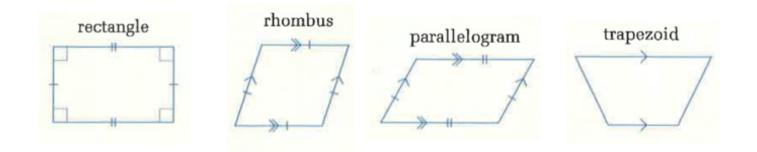
Example 2: Classify Each Triangle in Two ways using its angle measures

a)

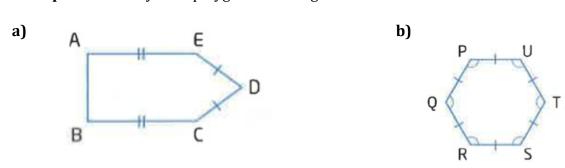

Part 2: Classifying Polygons

A ${\it polygon}$ is a closed figure formed by three or more line segments.

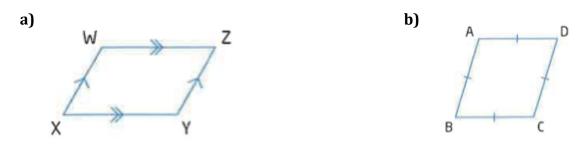
A *regular polygon* has all sides equal and all angles equal.


Some $\boldsymbol{quadrilaterals}$ have special names.

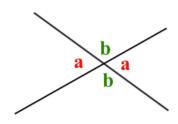
A regular quadrilateral is a square.



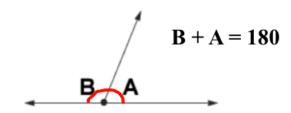
Number of Sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon


An irregular quadrilateral may be a *rectangle*, *rhombus*, *parallelogram*, or *trapezoid*

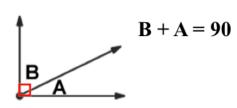
Example 3: Classify each polygon according to its number of sides and whether it is regular or irregular.


Example 4: Classify each quadrilateral

Part 3: Angle Properties


Opposite Angles:

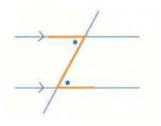
- When 2 angles intersect, the opposite angles are equal.


Supplementary Angles:

- angles that add to 180 degrees
- angles on a straight line are supplementary

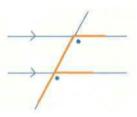
Complementary Angles:

- angles that add to 90 degrees

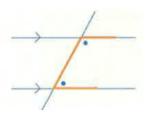


Part 4: Parallel Line Theorems

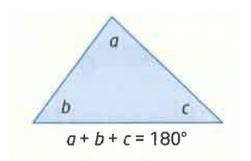
When a transversal crosses parallel lines, many pairs of angles are related...


Alternate Interior Angles are equal

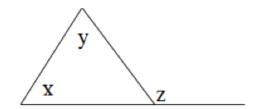
- Z pattern


Corresponding Angles are equal

- F pattern

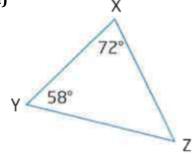

 $\textbf{Co-Interior Angles} \ add \ to \ 180$

- C pattern

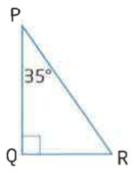


Part 6: Triangle Theorems

The sum of the **interior angles** of a triangle is **180** degrees.

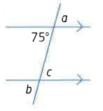


The **exterior angle** is equal to the sum of the 2 opposite interior angles.

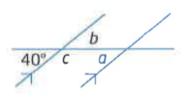


Example 5: Find the measure of the third angle in each triangle...

a)



b)



Example 6: Find the measure of the angles a, b, and c. Give reasons for your answers...

a)

b)

