L1 – 1.5 Averag MHF4U Jensen	e Rates of Change
Part 1: Termino	logy
dependent vario independent va	: a measure of the change in one quantity (the able) with respect to a change in another quantity (the riable).
of a relation	: a line that passes through two points on the graph
	: a line that touches the graph of a relation at only one point within a small interval
An	is a change that takes place over an, while an is a change that takes place in an We will
focus an averag	e rates of change in this section.
An average rate	e of change corresponds to the slope of a between two points on a curve. Average rate of change = slope of secant = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$
	$y = f(x)$ (x_2, y_2) (x_1, y_1)

Part 2: Average Rates of Change from a Table or Graph

Note: All ______ relationships have a constant rate of change. Average rate of change calculations over different intervals of the independent variable give the _____ result.

We will be focusing on ______relationships. Non-linear relationships do not have a constant rate of change. Average rate of change calculations over different intervals of the independent interval give ______ results.

Example 1: Andrew drains water from a hot tub. The tub holds 1600 L of water. It takes 2 hours for the water to drain completely. The volume *V*, in Liters, of water remaining in the tub at various times *t*, in minutes, is shown in the table and graph.

a) Calculate the average rate of change in volume during each of the following time intervals.

i)
$$30 \le t \le 90$$

Time (min)	Volume (L)
0	1600
10	1344
20	1111
30	900
40	711
50	544
60	400
70	278
80	178
90	100
100	44
110	10
120	0

ii) $60 \le t \le 90$

iv) $110 \le 120$

b) Does the tub drain at a constant rate?

A ______ rate of change indicates the quantity of the dependent variable is decreasing over the interval. The secant line has a negative slope.

A ______ rate of change indicates the quantity of the dependent variable is increasing over the interval. The secant line has a positive slope.

Part 2: Average Rate of Change from an Equation

Example 2: A rock is tossed upward from a cliff that is 120 meters above the water. The height of the rock above the water is modelled by $h(t) = -5t^2 + 10t + 120$, where h is the height in meters and t is the time in seconds. Calculate the average rate of change in height during each time intervals.

a) $0 \le t \le 1$

b) $1 \le t \le 2$

c) $2 \le t \le 3$