Part 1: Terminology

 : a measure of the change in one quantity (the dependent variable) with respect to a change in another quantity (the independent variable).\qquad : a line that passes through two points on the graph of a relation

\qquad : a line that touches the graph of a relation at only one point within a small interval

An \qquad is a change that takes place over an \qquad , while an focus an average rates of change in this section.

An average rate of change corresponds to the slope of a \qquad between two points on a curve.

$$
\text { Average rate of change }=\text { slope of secant }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{r i s e}{r u n}
$$

Part 2: Average Rates of Change from a Table or Graph

Note: All \qquad relationships have a constant rate of change. Average rate of change calculations over different intervals of the independent variable give the
\qquad result.

We will be focusing on \qquad relationships. Non-linear relationships do not have a constant rate of change. Average rate of change calculations over different intervals of the independent interval give \qquad results.

Example 1: Andrew drains water from a hot tub. The tub holds 1600 L of water. It takes 2 hours for the water to drain completely. The volume V, in Liters, of water remaining in the tub at various times t, in minutes, is shown in the table and graph.
a) Calculate the average rate of change in volume during each of the following time intervals.
i) $30 \leq t \leq 90$
ii) $60 \leq t \leq 90$

Time (min)	Volume (L)
0	1600
10	1344
20	1111
30	900
40	711
50	544
60	400
70	278
80	178
90	100
100	44
110	10
120	0

iii) $90 \leq 110$
iv) $110 \leq 120$
b) Does the tub drain at a constant rate?

A \qquad rate of change indicates the quantity of the dependent variable is decreasing over the interval. The secant line has a negative slope.

A \qquad rate of change indicates the quantity of the dependent variable is increasing over the interval. The secant line has a positive slope.

Part 2: Average Rate of Change from an Equation

Example 2: A rock is tossed upward from a cliff that is 120 meters above the water. The height of the rock above the water is modelled by $h(t)=-5 t^{2}+10 t+120$, where h is the height in meters and t is the time in seconds. Calculate the average rate of change in height during each time intervals.
a) $0 \leq t \leq 1$
b) $1 \leq t \leq 2$
c) $2 \leq t \leq 3$

