• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
L1 – 4.3 Co-function Identities	
MHF4U	
Jensen	

Part 1: Remembering How to Prove Trig Identities

Fundamental Trigonometric Identities			
Reciprocal Identities	Quotient Identities	Pythagorean Identities	
$csc \ \theta = \frac{1}{sin \ \theta}$ $sec \ \theta = \frac{1}{cos \ \theta}$ $cot \ \theta = \frac{1}{tan \ \theta}$	$\frac{\sin\theta}{\cos\theta} = \tan\theta$ $\frac{\cos\theta}{\sin\theta} = \cot\theta$	$\sin^2\theta + \cos^2\theta = 1$	

Tips and Tricks			
Reciprocal Identities	Quotient Identities	Pythagorean Identities	
Square both sides $csc^2 \theta = \frac{1}{sin^2 \theta}$ $sec^2 \theta = \frac{1}{cos^2 \theta}$ $cot^2 \theta = \frac{1}{tan^2 \theta}$	Square both sides $\frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta$ $\frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta$	Rearrange the identity $sin^2\theta = 1 - cos^2\theta$ $cos^2\theta = 1 - sin^2\theta$ Divide by either $sin^2\theta$ or $sin^2\theta$ $1 + cot^2\theta = csc^2\theta$ $tan^2\theta + 1 = sec^2\theta$	

General tips for proving identities:

- Separate into LS and RS. Terms may NOT cross between sides. i)
- Try to change everything to $\sin \theta$ or $\cos \theta$ ii)
- If you have two fractions being added or subtracted, find a common denominator and iii) combine the fractions.
- Use difference of squares $\rightarrow 1 \sin^2 \theta = (1 \sin \theta)(1 + \sin \theta)$ Use the power rule $\rightarrow \sin^6 \theta = (\sin^2 \theta)^3$ iv)
- v)

Example 1: Prove each of the following identities

a) $\tan^2 x + 1 = \sec^2 x$

b)
$$\cos^2 x = (1 - \sin x)(1 + \sin x)$$

c)
$$\frac{\sin^2 x}{1-\cos x} = 1 + \cos x$$

Part 2: Transformation Identities

Because of their periodic nature, there are many equivalent trigonometric expressions .

Horizontal translations of _____ that involve both a sine function and a cosine function can be used to obtain two equivalent functions with the same graph.

Translating the cosine function $\frac{\pi}{2}$ to the ______ results in the graph of the sine function, $f(x) = \sin x$.

Similarly, translating the sine function $\frac{\pi}{2}$ to the ______ results in the graph of the cosine function, $f(x) = \cos x$.

Transformation Identities

Part 3: Even/Odd Function Identities

Remember that $\cos x$ is an ______ function. Reflecting its graph across the y-axis results in two equivalent functions with the same graph.

 $2^{\uparrow y}$ $y = \cos(-\theta)_{1} \qquad y = \cos \theta$ $(-2\pi - \pi)_{0} \qquad \pi - 2\pi$ -2^{-2}

2

 $\mathbf{y} = \cos \theta$

 $= \sin \theta$

sin x and tan x are both ______ functions. They have rotational symmetry about the origin.

 $\tan(-\theta) = -\tan\theta$

Even/Odd Identities

Part 4: Co-function Identities

The co-function identities describe trigonometric relationships between complementary angles in a right triangle.

Co-Function Identities

We could identify other equivalent trigonometric expressions by comparing principle angles drawn in standard position in quadrants II, III, and IV with their related acute (reference) angle in quadrant I.

Principle in Quadrant II	Principle in Quadrant III	Principle in Quadrant IV

Example 2: Prove both co-function identities using transformation identities

a) $\cos\left(\frac{\pi}{2} - x\right) = \sin x$	b) $\sin\left(\frac{\pi}{2} - x\right) = \cos x$
--	---

Example 3: Given that $\sin \frac{\pi}{5} \approx 0.5878$, use equivalent trigonometric expressions to evaluate the following:

a) $\cos \frac{3\pi}{10}$

b) $\cos \frac{7\pi}{10}$