•
)
۰.

In this section you will learn about how a logarithmic function is the inverse of an exponential function. You will also learn how to express exponential equations in logarithmic form.

Part 1: Review of Exponential Functions

Equation: $y = a(b)^x$

- a = initial amount
- b = growth (b > 1) or decay (0 < b < 1) factor
- y =future amount
- x = number of times a has increased or decreased

To calculate x, use the equation: $x = \frac{total time}{time it takes for one growth or decay period}$

Example 1: An insect colony has a current population of 50 insects. Its population doubles every 3 days.

a) What is the population after 12 days?

b) How long until the population reaches 25 600?

Part 2: Review of Inverse Functions

Inverse of a function:

• The inverse of a function f is denoted as f^{-1}

• The function and its inverse have the property that if f(a) = b, then $f^{-1}(b) = a$

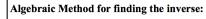
• So if f(5) = 13, then $f^{-1}(13) = 5$

• More simply put: The inverse of a function has all the same points as the original function, except that the x's and y's have been reversed.

The graph of $f^{-1}(x)$ is the graph of f(x) reflected in the line y = x. This is true for all functions and their inverses.

= x.

Example 2: Determine the equation of the inverse of the function $f(x) = 3(x-5)^2 + 1$



 $^{1}(x)$

1. Replace f(x) with "y"

2. Switch the x and y variables

3. Isolate for *y*

4. replace y with $f^{-1}(x)$

Equation of inverse:		

Part 3: Review of Exponent Laws

Name	Rule
Product Rule	$x^a \cdot x^b =$
Quotient Rule	$\frac{x^a}{x^b} =$
Power of a Power Rule	$(x^a)^b =$
Negative Exponent Rule	$x^{-a} =$
Exponent of Zero	$x^{0} =$

Part 4: Inverse of an Exponential Function

Example 3:

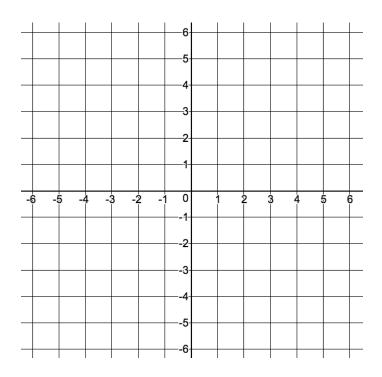
a) Find the equation of the inverse of $f(x) = 2^x$.

This step uses the 'change of base' formula	$\log_b m = \frac{\log m}{\log b}$
that we will cover later in the unit.	$\log_b m = \log_b$

b) Graph the both f(x) and $f^{-1}(x)$.

$f(x) = 2^x$		$f^{-1}(x) =$	$= log_2 x$
x	y	x	у

Note: just swap x and y coordinates to get key points for the inverse of a function. The graph should appear to be a reflection across the line y = x.



c) Complete the chart of key properties for both functions

$y = 2^x$	$y = \log_2 x$
<i>x</i> -int:	<i>x</i> -int:
<i>y</i> -int:	<i>y</i> -int:
Domain:	Domain:
Range:	Range:
Asymptote:	Asymptote:

Part 5: What is a Logarithmic Function?

The logarithmic function is the ______ of the exponential function with the same base.

The **logarithmic function** is defined as $y = \log_b x$, or y equals the logarithm of x to the base b.

The function is defined only for _____

In this notation, _____ is the exponent to which the base, _____, must be raised to give the value of _____.

In other words, the solution to a logarithm is always an ______.

The logarithmic function is most useful for solving for unknown

______ are logarithms with a base of 10. It is not necessary to write the base for common logarithms: $\log x$ means the same as $\log_{10} x$

Part 6: Writing Equivalent Exponential and Logarithmic Expressions

Exponential equations can be written in logarithmic form, and vice versa

 $y = b^x \rightarrow$

 $y = \log_b x \rightarrow$

Example 4: Rewrite each equation in logarithmic form

a) $16 = 2^4$ b) $m = n^3$ c) $3^{-2} = \frac{1}{9}$

Example 5: Write each logarithmic equation in exponential form

a) $\log_4 64 = 3$ **b)** $y = \log x$

Note: because there is no base written, this is understood to be the common logarithm of x.

Example 6: Evaluate each logarithm without a calculator

Rule: if
$$x^a = x^b$$
, then $a = b$
Rule: $\log_a(a^b) = b$

a) $y = \log_3 81$
a) $y = \log_4 64$

Note: either of the rules presented above are appropriate to use for evaluating logarithmic expressions

b)
$$y = \log\left(\frac{1}{100}\right)$$
 c) $y = \log_2\left(\frac{1}{8}\right)$