L1 – Derivative of a Polynomial Functions MCV4U Jensen

In advanced functions, you should have been introduced to the idea that the instantaneous rate of change is represented by the slope of the ______ at a point on the curve. You also learned that you can determine this value by taking the derivative of the function using the Newton Quotient.

Newton Quotient Example:

a) Find the equation of the derivative of $f(x) = 3x^2 + 2x + 4$

Newton's Quotient: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

b) Calculate f'(5). What does it represent?

Mathematicians have derived a set of rules for calculating derivatives that make this process more efficient.

Rule	Derivative	Example
Constant Rule		
	f'(x) = 0	
If $f(x) = c$ where c is a constant		
Power Rule		
	$f'(x) = nx^{n-1}$	
If $f(x) = x^n$		
Constant Multiple Rule		
	$f'(x) = c \cdot a'(x)$	
If $f(x) = c \cdot g(x)$ where c is a	$\int (x) = c g(x)$	
constant		
Sum Rule		
	h'(x) = f'(x) + g'(x)	
If $h(x) = f(x) + g(x)$		
Difference Rule		
	h'(x) = f'(x) - g'(x)	
If $h(x) = f(x) - g(x)$		

Proof of Power Rule:

Use Binomial Theorem:
$$t_{r+1} = \binom{n}{r} a^{n-r} b^r$$

Example 1: Determine the equation of the derivative of each of the following functions:

a)
$$f(x) = 3x^5$$
 b) $f(x) = 71$ **c)** $f(x) = \sqrt{x}$

d)
$$y = \sqrt[3]{x}$$
 e) $y = \frac{1}{x}$ **f**) $y = -\frac{1}{x^5}$

Example 2: Differentiate each function

a)
$$y = 5x^6 - 4x^3 + 6$$

b) $f(x) = -3x^5 + 8\sqrt{x} - 9.3$

c)
$$g(x) = (2x - 3)(x + 1)$$

d) $h(x) = \frac{-8x^6 + 8x^2}{4x^5}$

Example 3: Determine an equation for the tangent to the curve $f(x) = 4x^3 + 3x^2 - 5$ at x = -1.

Point on the tangent line:

Slope of tangent line:

Remember: The equation of the derivative tells you the slope of the tangent to the original function.

Equation of tangent line:

Example 4: Determine the point(s) on the graph of $y = x^2(x + 3)$ where the slope of the tangent is 24.

